4 {α|α≤3}
分析:(A)根據(jù)條件,得到∠PAC是一個(gè)直角,根據(jù)同弧所對(duì)的圓周角相等,得到直角三角形中的一個(gè)角和一條邊,根據(jù)兩個(gè)量利用三角函數(shù)定義,得到結(jié)果.
(B)先將曲線(xiàn)p=4cos(θ-
)中的三角函數(shù)利用差角公式展開(kāi)后,兩邊同乘以ρ后化成直角坐標(biāo)方程,再利用直角坐標(biāo)方程進(jìn)行求解.
(C)由于|x-2|+|x+1|表示數(shù)軸上的點(diǎn)x對(duì)應(yīng)點(diǎn)到2和-1對(duì)應(yīng)點(diǎn)的距離之和,它的最小值等于3,可得3≥a.
解答::∵PA是⊙O的切線(xiàn),切點(diǎn)為A,AC是⊙O的直徑,∴∠PAC是一個(gè)直角,
∵∠PAB=30°,∴∠PCA=30°.
∵PA=2,∴AC=2
,
故答案為
.
(B)將曲線(xiàn)p=4cos(θ-
)化為 ρ=2cosθ+2
sinθ,即 ρ
2=2ρ•cosθ+2
ρ•sinθ,花為直角坐標(biāo)方程為 x
2+y
2-2x-2
y=0,是一個(gè)半徑為2圓.
圓上兩點(diǎn)間的距離的最大值即為圓的直徑,故答案為 4.
(C)由于|x-2|+|x+1|表示數(shù)軸上的點(diǎn)x對(duì)應(yīng)點(diǎn)到2和-1對(duì)應(yīng)點(diǎn)的距離之和,它的最小值等于3,∴3≥α,
故答案為 {α|α≤3}.
點(diǎn)評(píng):本題主要是考查與圓有關(guān)的比例線(xiàn)段,點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,絕對(duì)值的意義,絕對(duì)值不等式的解法,屬于中檔題.