【題目】已知函數(shù)f(x)=alnx﹣(a+2)x+x2 .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,試求λ的取值范圍.
【答案】
(1)解:函數(shù)的定義域是(0,+∞),
f′(x)= ﹣(a+2)+2x= ,
a≤0時(shí),函數(shù)在(0,1)遞減,在(1,+∞)遞增,
0<a<2時(shí),函數(shù)在(0, ),(1,+∞)遞增,在( ,1)遞減,
a=2時(shí),函數(shù)在(0,+∞)遞增,
a>2時(shí),函數(shù)在(0,1),( ,+∞)遞增,在(1, )遞減
(2)解:| |≤ 成立,
即|f(x1)﹣f(x2)|≤λ| ﹣ |恒成立,
不妨設(shè)x2>x1,∵a∈[4,10]時(shí),f(x)在[1,2]遞減,
則f(x1)﹣f(x2)≤λ( ﹣ ),得f(x1)﹣ ≤f(x2)﹣ ,
設(shè)g(x)=f(x)﹣ =alnx﹣(a+2)x+x2﹣ ,
故對(duì)于任意的a∈[4,10],x1,x2∈[1,2],x2>x1,g(x1)≤g(x2)恒成立,
故g(x)=f(x)﹣ 在[1,2]遞增,
g′(x)= ≥0在x∈[1,2]恒成立,
故2x3﹣(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,
即a(﹣x2+x)+2x3﹣2x2+λ≥0在x∈[1,2]恒成立,
∵x∈[1,2]時(shí),﹣x2+x≤0,
∴只需10(﹣x2+x)+2x3﹣2x2+λ≥0在x∈[1,2]恒成立,
即2x3﹣12x2+10x+λ≥0在x∈[1,2]恒成立,
設(shè)h(x)=2x3﹣12x2+10x+λ,則h(2)=﹣12+λ≥0,
故λ≥12,
故實(shí)數(shù)λ的范圍是[12,+∞)
【解析】(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)問(wèn)題轉(zhuǎn)化為2x3﹣(a+2)x2+ax+λ≥0在x∈[1,2]恒成立,根據(jù)x的范圍得2x3﹣12x2+10x+λ≥0在x∈[1,2]恒成立,設(shè)h(x)=2x3﹣12x2+10x+λ,根據(jù)函數(shù)的性質(zhì)求出λ的范圍即可.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冷飲店為了解氣溫變化對(duì)其營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份銷(xiāo)售淡季中5天的日營(yíng)業(yè)額y(單位:百元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如下表所示:
x | 3 | 6 | 7 | 9 | 10 |
y | 12 | 10 | 8 | 8 | 7 |
(Ⅰ)判定y與x之間是正相關(guān)還是負(fù)相關(guān),并求回歸方程 = x+
(Ⅱ)若該地1月份某天的最低氣溫為6℃,預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額
(參考公式: = = , = ﹣ ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB= CD=1,M為PB的中點(diǎn).
(1)試在CD上確定一點(diǎn)N,使得MN∥平面PAD;
(2)點(diǎn)N在滿(mǎn)足(1)的條件下,求直線(xiàn)MN與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD為正方形,過(guò)A作線(xiàn)段SA⊥平面ABCD,過(guò)A作與SC垂直的平面交SB,SC,SD于E,K,H,求證:E是點(diǎn)A在直線(xiàn)SB上的射影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ax3﹣x2+x在區(qū)間(0,2)上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣ (k+1)x2+3kx+1,其中k∈R.
(1)當(dāng)k=3時(shí),求函數(shù)f(x)在[0,5]上的值域;
(2)若函數(shù)f(x)在[1,2]上的最小值為3,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望 (文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是偶函數(shù).
(1)求 的值;
(2)若函數(shù) 沒(méi)有零點(diǎn),求 得取值范圍;
(3)若函數(shù) , 的最小值為0,求實(shí)數(shù) 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com