【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

【答案】(1)(2)有兩個不同的零點

【解析】分析:Ⅰ)設(shè)切點坐標為,故可以關(guān)于的方程組,從該方程組解得

Ⅱ)因,故為減函數(shù),結(jié)合可得的零點是分段函數(shù),故分別討論上的單調(diào)性,結(jié)合利用零點存在定理得到有兩個不同的零點

詳解:Ⅰ)設(shè)切點,所以,故,從而

又切點在函數(shù)上,所以,故,

解得,

Ⅱ)若且函數(shù)的零點為

因為,,上的減函數(shù),

時,

因為,

時,;

時,,

上單調(diào)遞增,上單調(diào)遞減,則,

所以上單調(diào)遞減

時,,

所以在區(qū)間上單調(diào)遞增

,且;

,

所以函數(shù)在區(qū)間上存在一個零點, 在區(qū)間上存在一個零點

綜上,有兩個不同的零點

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求a的取值范圍;

(2), ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,分別為,的中點,的中點, ,.將沿折起到的位置,使得平面平面, 的中點,如圖2.

Ⅰ)求證: 平面;

Ⅱ)求F到平面A1OB的距離.

    1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)的值;

(2)若函數(shù)的圖像與的圖像有交點,求的取值范圍;

(3)若函數(shù),是否存在實數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓C過點,焦點,圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P

①若直線l與橢圓C有且只有一個公共點,求點P的坐標;

②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:.記作數(shù)列,若數(shù)列的前項和為,則___ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p,q ≤0.

(1)pq的充分而不必要條件,求實數(shù)m的取值范圍;

(2)qp的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,是橢圓上在第二象限內(nèi)的一點,且直線的斜率為.

(1)求點的坐標;

(2)過點作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點,是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

同步練習冊答案