【題目】已知函數(shù)
(Ⅰ)若的圖像與直線相切,求
(Ⅱ)若且函數(shù)的零點為,
設(shè)函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))
【答案】(1)(2)有兩個不同的零點
【解析】分析:(Ⅰ)設(shè)切點坐標為,故可以關(guān)于的方程組,從該方程組解得.
(Ⅱ)因,故為減函數(shù),結(jié)合可得的零點.又是分段函數(shù),故分別討論在上的單調(diào)性,結(jié)合利用零點存在定理得到有兩個不同的零點.
詳解:(Ⅰ)設(shè)切點,所以,故,從而
又切點在函數(shù)上,所以即,故,
解得, .
(Ⅱ)若且函數(shù)的零點為,
因為,,為上的減函數(shù),
故.
當時,,
因為,
當時,;
當時,,
則在上單調(diào)遞增,上單調(diào)遞減,則,
所以在上單調(diào)遞減.
當時,,
所以在區(qū)間上單調(diào)遞增.
又,且;
又,
所以函數(shù)在區(qū)間上存在一個零點, 在區(qū)間上存在一個零點.
綜上,有兩個不同的零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△中,,分別為,的中點,為的中點, ,.將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(Ⅰ)求證: 平面;
(Ⅱ)求F到平面A1OB的距離.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖像與的圖像有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓C過點,焦點,圓O的直徑為.
(1)求橢圓C及圓O的方程;
(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標;
②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:.記作數(shù)列,若數(shù)列的前項和為,則___ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:,q: ≤0.
(1)若p是q的充分而不必要條件,求實數(shù)m的取值范圍;
(2)若q是p的必要而不充分條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,是橢圓上在第二象限內(nèi)的一點,且直線的斜率為.
(1)求點的坐標;
(2)過點作一條斜率為正數(shù)的直線與橢圓從左向右依次交于兩點,是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com