【題目】某大型工廠有臺大型機(jī)器,在個月中,臺機(jī)器至多出現(xiàn)次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需名工人進(jìn)行維修.每臺機(jī)器出現(xiàn)故障的概率為.已知名工人每月只有維修臺機(jī)器的能力,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.
(1)若每臺機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時有工人進(jìn)行維修,則稱工廠能正常運(yùn)行.若該廠只有名維修工人,求工廠每月能正常運(yùn)行的概率;
(2)已知該廠現(xiàn)有名維修工人.
(ⅰ)記該廠每月獲利為萬元,求的分布列與數(shù)學(xué)期望;
(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘名維修工人?
【答案】(1);(2)(ⅰ);(ⅱ)不應(yīng)該.
【解析】
(1)根據(jù)相互獨(dú)立事件的概率公式計算出事故機(jī)器不超過臺的概率即可;
(2)(i)求出的可能取值及其對應(yīng)的概率,得出的分布列和數(shù)學(xué)期望;
(ⅱ)求出有名維修工人時的工廠利潤,得出結(jié)論.
解:(1)因為該工廠只有名維修工人,故要使工廠正常運(yùn)行,最多只有臺大型機(jī)器出現(xiàn)故障.
∴該工廠正常運(yùn)行的概率為:.
(2)(i)的可能取值有,,
,.
∴的分布列為:
X | 31 | 44 |
P |
∴ .
(ⅱ)若工廠再招聘一名維修工人,則工廠一定能正常運(yùn)行,
工廠所獲利潤為萬元,
因為,
∴該廠不應(yīng)該再招聘名維修工人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為,( 為參數(shù)).直線與曲線分別交于、兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的直角坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,游客從景點(diǎn)下山至有兩種路徑:一種是從沿直線步行到,另一種是先從乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從下山,甲沿勻速步行,速度為米/分鐘.在甲出發(fā)分鐘后,乙從乘纜車到,在處停留分鐘后,再從勻速步行到.已知纜車從到要分鐘, 長為米,若,.為使兩位游客在處互相等待的時間不超過分鐘,則乙步行的速度(米/分鐘)的取值范圍是 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于以,為公共焦點(diǎn)的橢圓和雙曲線,設(shè)是它們的一個公共點(diǎn),,分別為它們的離心率.若,則的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】地球海洋面積遠(yuǎn)遠(yuǎn)大于陸地面積,隨著社會的發(fā)展,科技的進(jìn)步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟(jì)利益,還擁有著深遠(yuǎn)的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學(xué)的行政主管部門從該大學(xué)隨機(jī)抽取100名大學(xué)生進(jìn)行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[65,70),第二組[70,75),第二組[75,80),第四組[80,85),第五組[85,90],得到頻率分布直方圖如下圖:
(1)求實(shí)數(shù)的值;
(2)若從第四組、第五組的學(xué)生中按組用分層抽樣的方法抽取6名學(xué)生組成中國海洋實(shí)地考察小隊,出發(fā)前,用簡單隨機(jī)抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過點(diǎn),且離心率為的橢圓的標(biāo)準(zhǔn)方程;
(2)已知雙曲線與橢圓:有相同的焦點(diǎn),且過點(diǎn),求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的極坐標(biāo)方程為。
(1)求直線的普通方程和圓的直角坐標(biāo)方程;
(2)設(shè)圓與直線交于,兩點(diǎn),若點(diǎn)的坐標(biāo)為,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點(diǎn).
(1)從這5個點(diǎn)中任取3個點(diǎn),求這3個點(diǎn)組成直角三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣弧.路燈采用錐形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設(shè)為燈罩軸線與路面的交點(diǎn),圓心在線段上.
(1)當(dāng)為何值時,點(diǎn)恰好在路面中線上?
(2)記圓心在路面上的射影為,且在線段上,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com