(2012•順義區(qū)二模)如果實(shí)數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,則
y-1
x-1
的最小值為
1
2
1
2
;最大值為
2
2
分析:本題屬于線性規(guī)劃中的延伸題,對于可行域不要求線性目標(biāo)函數(shù)的最值,而是求可行域內(nèi)的點(diǎn)與點(diǎn)(1,1)構(gòu)成的直線的斜率最值.
解答:解:不等式組
x-y+1≥0
y+1≥0
x+y+1≤0
表示的區(qū)域如圖,
z=
y-1
x-1
的幾何意義是可行域內(nèi)的點(diǎn)與點(diǎn)(1,1)構(gòu)成的直線的斜率問題.
當(dāng)取得點(diǎn)B(-1,0)時,
z=
y-1
x-1
取最小值為
1
2
,
當(dāng)取得點(diǎn)C(0,-1)時,
z=
y-1
x-1
取最大值為2,
故答案為:
1
2
,2.
點(diǎn)評:本題利用直線斜率的幾何意義,求可行域中的點(diǎn)與原點(diǎn)的斜率.本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.目標(biāo)函數(shù)有唯一最優(yōu)解是我們最常見的問題,這類問題一般要分三步:畫出可行域、求出關(guān)鍵點(diǎn)、定出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知向量
a
b
的夾角為
π
3
,且|
a
|=2
,|
b
|=1
,則向量
a
與向量
a
+2
b
的夾角等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知p、q是簡單命題,則“p∧q是真命題”是“?p是假命題”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)如圖是一個空間幾何體的三視圖,則該幾何體的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知全集為U,P⊆U,定義集合P的特征函數(shù)為fP(x)=
1,x∈P
0,x∈CUP
,對于A⊆U,B⊆U,給出下列四個結(jié)論:
①對?x∈U,有fCUA(x)+fA(x)=1
②對?x∈U,若A⊆B,則fA(x)≤fB(x);
③對,有fA∩B(x)=fA(x)•fB(x);
④對?x∈U,有fA∪B(x)=fA(x)+fB(x).
其中,正確結(jié)論的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)二模)已知點(diǎn)P(-3,4)在角α的終邊上,則sinα=
4
5
4
5

查看答案和解析>>

同步練習(xí)冊答案