若拋物線y2=4x的準(zhǔn)線也是雙曲線
x2
a2
-
4y2
3
=1
的一條準(zhǔn)線,則該雙曲線的漸近線方程為(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x
由題意拋物線y2=4x的準(zhǔn)線是x=-1
又拋物線y2=4x的準(zhǔn)線也是雙曲線
x2
a2
-
4y2
3
=1
的一條準(zhǔn)線
a2
a2+
3
4
=1,解得a2=
3
2
,a=
6
2

又b=
3
2

∴該雙曲線的漸近線方程為y=±
2
2
x

故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線y2=2px(p>0)外一點(diǎn)M,作與拋物線只有一個交點(diǎn)的直線共______條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線截直線2x-y-4=0所得的弦長為3
5
,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

F是拋物線y2=2px(p>0)的焦點(diǎn),P是拋物線上一點(diǎn),F(xiàn)P延長線交y軸于Q,若P恰好是FQ的中點(diǎn),則|PF|=( 。
A.
p
3
B.
2
3
p
C.pD.
3
4
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=ax2的準(zhǔn)線方程為y=-1,則實(shí)數(shù)a=( 。
A.4B.
1
4
C.2D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=-8x的焦點(diǎn)坐標(biāo)是(  )
A.(0,-2)B.(-2,0)C.(0,2)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線y2=2x的焦點(diǎn),點(diǎn)P是拋物線上的一動點(diǎn),則|PA|+|PF|取得最小值時點(diǎn)P的坐標(biāo)是( 。
A.(0,0)B.(1,1)C.(2,2)D.(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知三點(diǎn)A(m,n),B(n,t),C(t,m),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為
5
3
,而直線AB恰好經(jīng)過拋物線x2=2p(y-q),(p>0)的焦點(diǎn)F并且與拋物線交于P、Q兩點(diǎn)(P在y軸左側(cè)).則|
PF
QF
|=(  )
A.9B.4C.
173
2
D.
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的對稱中心在坐標(biāo)原點(diǎn),一個頂點(diǎn)為,右焦點(diǎn)F與點(diǎn) 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點(diǎn)M,N滿足,若存在,求直線l的方程;若不存在,說明理由。

查看答案和解析>>

同步練習(xí)冊答案