在平面直角坐標系xOy中,已知A(3,1),C(1,0).
(1)求以點C為圓心,且經過點A的圓C的標準方程;
(2)若直線l的方程為x-2y+9=0,判斷直線l與(1)中圓C的位置關系,并說明理由.
分析:(1)因為圓C的圓心為C(1,0),可設圓C的標準方程為(x-1)2+y2=r2.把點A(3,1)代入圓C的方程求得r2=5,從而求得圓C的標準方程.
(2)由于圓心C到直線l的距離為d=
|1-2×0+9|
22+12
=2
5
,大于半徑,可得直線l與圓C相離.
解答:解:(1)因為圓C的圓心為C(1,0),可設圓C的標準方程為(x-1)2+y2=r2
因為點A(3,1)在圓C上,所以(3-1)2+12=r2,即r2=5.
所以圓C的標準方程為(x-1)2+y2=5.
(2)由于圓心C到直線l的距離為d=
|1-2×0+9|
22+12
=2
5

因為2
5
5
,即d>r,所以直線l與圓C相離.
點評:本小題主要考查圓的標準方程、直線與圓的位置關系等基礎知識,點到直線的距離公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案