如圖所示,過拋物線y2=2px(p>0)的焦點F的直線l交拋物線于點A、B,交其準(zhǔn)線l′點C,若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為( 。
分析:分別過點A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點E,D,設(shè)|BF|=a,根據(jù)拋物線定義可知|BD|=a,進(jìn)而推斷出∠BCD的值,在直角三角形中求得a,進(jìn)而根據(jù)BD∥FG,利用比例線段的性質(zhì)可求得p,則拋物線方程可得.
解答:解:如圖分別過點A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點E,D,設(shè)|BF|=a,則由已知得:|BC|=2a,由定義得:|BD|=a,故∠BCD=30°,
在直角三角形ACE中,∵|AE|=3,|AC|=3+3a,
∴2|AE|=|AC|
∴3+3a=6,
從而得a=1,
∵BD∥FG,
1
p
=
2
3
求得p=
3
2
,
因此拋物線方程為y2=3x.
故選C.
點評:本題主要考查了拋物線的標(biāo)準(zhǔn)方程.考查了學(xué)生對拋物線的定義和基本知識的綜合把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為y=
1
8
x2+b
,如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G處的切線經(jīng)過橢圓的右焦點F1
(1)求點G和點F1的坐標(biāo)(用b表示);
(2)求滿足條件的橢圓方程和拋物線方程;
(3)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)b>0,橢圓方程為
x2
2b2
+
y2
b2
=1
,拋物線方程為x2=8(y-b).如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,過點M(m,1)作直線AB交拋物線x2=y于A,B兩點,且|AM|=|MB|,過M作x軸的垂線交拋物線于點C.連接AC,BC,記三角形ABC的面積為S,記直線AB與拋物線所圍成的陰影區(qū)域的面積為S
(1)求m的取值范圍;
(2)當(dāng)S最大時,求m的值;
(3)是否存在常數(shù)λ,使得
SS
?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考真題 題型:解答題

設(shè)b>0,橢圓方程為,拋物線方程為x2=8(y-b),如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1,
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京四中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)b>0,橢圓方程為,拋物線方程為x2=8(y-b).如圖所示,過點F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點為G,已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).

查看答案和解析>>

同步練習(xí)冊答案