【題目】若存在對(duì)于定義域?yàn)镽的函數(shù)f(x),若存在非零實(shí)數(shù)x0 , 使函數(shù)f(x)在(﹣∞,x0)和(x0 , +∞)上均有零點(diǎn),則稱x0為函數(shù)f(x)的一個(gè)“紐點(diǎn)”.則下列四個(gè)函數(shù)中,不存在“紐點(diǎn)”的是( 。
A.f(x)=x2+bx﹣1(b∈R)
B.f(x)=2x﹣x2
C.f(x)=﹣x﹣1
D.f(x)=2﹣|x﹣1|
【答案】C
【解析】解:A、f(x)=x2+bx﹣1(b∈R)為二次函數(shù),△=b2+4>0,有兩個(gè)零點(diǎn),且分布在圖象對(duì)稱軸x=兩側(cè),則紐點(diǎn)為;
B、分別做y=2x與y=x2圖象,如圖交于兩點(diǎn),則有圖可知紐點(diǎn)存在,可以取為0
C、f(x)=﹣x﹣1,函數(shù)圖象
只有一個(gè)零點(diǎn),不存在紐點(diǎn);
D、f(x)=2﹣|x﹣1|的紐點(diǎn)為1;
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今信息時(shí)代,眾多中小學(xué)生也配上了手機(jī).某機(jī)構(gòu)為研究經(jīng)常使用手機(jī)是否對(duì)學(xué)習(xí)成績有影響,在某校高三年級(jí)50名理科生第人的10次數(shù)學(xué)考成績中隨機(jī)抽取一次成績,用莖葉圖表示如圖:
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為經(jīng)常使用手機(jī)對(duì)學(xué)習(xí)成績有影響?
及格(60及60以上) | 不及格 | 合計(jì) | |
很少使用手機(jī) | |||
經(jīng)常使用手機(jī) | |||
合計(jì) |
(2)從50人中,選取一名很少使用手機(jī)的同學(xué)(記為甲)和一名經(jīng)常使用手機(jī)的同學(xué)(記為乙)解一道函數(shù)題,甲、乙獨(dú)立解決此題的概率分別為P1 , P2 , P2=0.4,若P1﹣P2≥0.3,則此二人適合為學(xué)習(xí)上互幫互助的“對(duì)子”,記X為兩人中解決此題的人數(shù),若E(X)=1.12,問兩人是否適合結(jié)為“對(duì)子”? 參考公式及數(shù)據(jù): ,其中n=a+b+c+d
P(K2≥k0) | 0.10 | 0.05 | 0.025 |
k0 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x)﹣f(x)>1,f(0)=2016,則不等式f(x)>2017ex﹣1(其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(﹣∞,0)∪(0,+∞)
B.(2017,+∞)
C.(0,+∞)
D.(0,+∞)∪(2017,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( x3﹣x2+ )cos2017( + )+2x+3在[﹣2015,2017]上的最大值為M,最小值為m,則M+m=( )
A.5
B.10
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若存在唯一的正整數(shù)x0 , 使得f(x0)≥0,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg( )為奇函數(shù).
(1)求m的值,并求f(x)的定義域;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)若對(duì)于任意θ∈[0, ],是否存在實(shí)數(shù)λ,使得不等式f(cos2θ+λsinθ﹣ )﹣lg3>0.若存在,求出實(shí)數(shù)λ的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣1≤x+1≤6},B={x|m﹣1≤x<2m+1}.
(1)當(dāng)x∈Z,求A的真子集的個(gè)數(shù)?
(2)若BA,求實(shí)數(shù)m的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集是空集,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標(biāo)方程;
(Ⅱ)當(dāng)φ∈(0,π)時(shí),l與C相交于P,Q兩點(diǎn),求|PQ|的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com