【題目】中央政府為了應(yīng)對(duì)因人口老齡化而造成的勞動(dòng)力短缺等問(wèn)題,擬定出臺(tái)“延遲退休年齡政策”.為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)從調(diào)查的100人中年齡在15~25,25~35兩組按分層抽樣的方法抽取6人參加某項(xiàng)活動(dòng)現(xiàn)從這6人中隨機(jī)抽2人,求這2人中至少1人的年齡在25~35之間的概率.
參考數(shù)據(jù):
其中n=a+b+c+d
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)根據(jù)題中數(shù)據(jù)匯總調(diào)表再計(jì)算判斷即可.
(2)根據(jù)分層抽樣以及枚舉法求解概率即可.
(1)由統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)的2×2列聯(lián)表如下:
年齡45歲以下 | 年齡45歲以上 | 總計(jì) | |
支持 | 35 | 45 | 80 |
不支持 | 15 | 5 | 20 |
總計(jì) | 50 | 50 | 100 |
6.25>3.841,
∴有95%的把握認(rèn)為以45歲為分界點(diǎn)的同人群對(duì)“延遲退休年齡政策”的態(tài)度有差異.即在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
(2)從調(diào)查的100人中年齡在15~25,25~35兩組按分層抽樣的方法抽取6人參加某項(xiàng)活動(dòng),
在15~25,25~35兩組共有30人,
15~25組有100×0.02×10=20人,抽取204人,設(shè)抽取的4人為A,B,C,D,
25~35組有100×0.01×10=10人,抽取102人,設(shè)抽取的2人為a,b,
現(xiàn)從這6人中隨機(jī)抽2人的基本事件為:AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,Ca,Cb,Da,Db,ab,15種情況;
這2人中至少1人的年齡在25~35之間的概率是.
所以這2人中至少1人的年齡在25~35之間的概率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若定義域均為D的三個(gè)函數(shù)f(x),g(x),h(x)滿(mǎn)足條件:對(duì)任意x∈D,點(diǎn)(x,g(x)與點(diǎn)(x,h(x)都關(guān)于點(diǎn)(x,f(x)對(duì)稱(chēng),則稱(chēng)h(x)是g(x)關(guān)于f(x)的“對(duì)稱(chēng)函數(shù)”.已知g(x)=,f(x)=2x+b,h(x)是g(x)關(guān)于f(x)的“對(duì)稱(chēng)函數(shù)”,且h(x)≥g(x)恒成立,則實(shí)數(shù)b的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是函數(shù)定義域的一個(gè)子集,若存在,使得成立,則稱(chēng)是的一個(gè)“準(zhǔn)不動(dòng)點(diǎn)”,也稱(chēng)在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),已知,.
(1)若,求函數(shù)的準(zhǔn)不動(dòng)點(diǎn);
(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的離心率,橢圓C上的點(diǎn)到其左焦點(diǎn)的最大距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)A作直線與橢圓相交于點(diǎn)B,則軸上是否存在點(diǎn)P,使得線段,且?若存在,求出點(diǎn)P坐標(biāo);否則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的偶函數(shù)滿(mǎn)足,且時(shí),,則函數(shù)在上的所有零點(diǎn)之和為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1a2…an.
(1)若Tn=n2,求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{an}滿(mǎn)足Tn=(1﹣an)(n∈N*),證明數(shù)列為等差數(shù)列,并求{an}的通項(xiàng)公式;
(3)數(shù)列{an}共有100項(xiàng),且滿(mǎn)足以下條件:
①;
②(1≤k≤99,k∈N*).
(Ⅰ)求的值;
(Ⅱ)試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)拋物線焦點(diǎn)的直線與拋物線交于(其中點(diǎn)在軸的上方)兩點(diǎn).
(1)若線段的長(zhǎng)為3,求到直線的距離;
(2)證明:為鈍角三角形;
(3)已知且,求三角形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).
(I)證明:CE∥平面PAB;
(II)求直線CE與平面PBC所成角的正弦值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com