【題目】設曲線所圍成的封閉區(qū)域為D.

1)求區(qū)域D的面積;

2)設過點的直線與曲線C交于兩點P、Q,求的最大值.

【答案】15122

【解析】

(1)由題設,由,因此.

,則當時,

此時,圖象時兩條直線段.

時,

,對應于一段二次函數(shù)的圖象.

,則當時,類似于前面的推導得,對應于二次函數(shù)圖象的一段:.

時,

,得到,無解.

綜上所述,區(qū)域D的集合為:

由區(qū)域D上函數(shù)圖象性質,知區(qū)域D的面積為.

(2)設過點的直線為l,為了求的最大值,由區(qū)域D的對稱性,只需考慮直線lDy軸右側圖像相交部分即可.設過點的直線l方程為,易知此時lD相交時有.

1.當時,lD分別相交于二次函數(shù)以及,兩個交點分別為

,

.

因此,,為關于k的遞減函數(shù).

2.當時,直線lD分別相交于二次函數(shù)以及直線,從圖形性質容易看出,隨著k2變到1的值逐步減少.

綜上所述,當l經過直線與二次函數(shù)的圖像交點時,的值最大,此時直線l的方程為:,的值為

.

落在y軸上時,.因此,的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)滿足,現(xiàn)給出下列命題:①函數(shù)是以2為周期的周期函數(shù);②函數(shù)是以4為周期的周期函數(shù);③函數(shù)為奇函數(shù);④函數(shù)為偶函數(shù),則其中真命題的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)討論的單調區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,的中點,將沿直線翻折成,連結,的中點,則在翻折過程中,下列說法中所有正確的序號是_______.

①存在某個位置,使得

②翻折過程中,的長是定值;

③若,則;

④若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是拋物線上一點,經過點的直線與拋物線交于、兩點(不同于點),直線分別交直線于點、.

1)求拋物線方程及其焦點坐標;

2)求證:以為直徑的圓恰好經過原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面,點的中點.

1)求證:平面平面;

2)求直線與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱臺中,底面是菱形,底面,且,,是棱的中點.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗(噸)標準煤的幾組對照數(shù)據(jù)

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;

(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,且a1,a3a13成等比數(shù)列,若a1=1Sn為數(shù)列{an}的前n項和,則的最小值為(   。

A.4B.3C.D.2

查看答案和解析>>

同步練習冊答案