(本小題滿分13分)
如圖,SD垂直于正方形ABCD所在的平面,AB=1,
(1)求證:
(2)設棱SA的中點為M,求異面直線DM與SC所成角的大小。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
關于直線a、b,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N.其中正確命題的個數(shù)為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
將兩塊三
角板按圖甲方式拼好,其中
,
,
,AC = 2,現(xiàn)將三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如圖乙.
(I)求證:BC ⊥AD;
(II)求證
:O為線段AB中點;
(III)求二面角D-AC-B的大小的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直四棱柱ABCD—A
1B
1C
1D
1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A
1A=2,點E
在線段BC上,點F在線段D
1C
1上,且BE=D
1F=1.
(1)求證:直線EF∥平面B
1D
1DB;
(2)求二面角F—DB—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
的三個頂點均在球O的球面上,且AB=AC=1,
,直線OA與平面ABC所成的角的正弦值為
,則球面上B、C兩點間的球面距離為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(8分)
如圖,在四面體
中,
,點
分別是
的中點.求證:
(1)直線
面
;
(2)平面
面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)直棱柱
中,底面
是直角梯形,
(Ⅰ)求證:
(Ⅱ)在
上是否存一點
,使得
與平面
與平面
都平行?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
第Ⅱ卷(非選擇題,共90分)
二、填空題:(本大題4小題,每小題5分,滿分20分)
13.用一個平面去截正方體,其截面是一個多邊形,則這個多邊形的邊數(shù)最多是 條 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(文)(本小題8分)
如圖,在四棱錐
中,
平面
,
,
,
,
(1)求證:
;
(2)求點
到平面
的距離
證明:(1)
平面
,
又
平面
(4分)
(2)設點
到平面
的距離為
,
,
,
求得
即點
到平面
的距離為
(8分)
(其它方法可參照上述評分標準給分)
查看答案和解析>>