(本小題滿分13分)
如圖,SD垂直于正方形ABCD所在的平面,AB=1,

(1)求證:
(2)設棱SA的中點為M,求異面直線DM與SC所成角的大小。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

關于直線a、b,以及平面M、N,給出下列命題:
①若a∥M,b∥M,則a∥b;
②若a∥M,b⊥M,則a⊥b;
③若a∥b,b∥M,則a∥M;
④若a⊥M,a∥N,則M⊥N.其中正確命題的個數(shù)為(  )
A.0 B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

將兩塊三角板按圖甲方式拼好,其中,,,AC = 2,現(xiàn)將三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如圖乙.

(I)求證:BC ⊥AD;
(II)求證:O為線段AB中點;
(III)求二面角D-AC-B的大小的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直四棱柱ABCD—A1B1C1D1中,已知底面四邊形
ABCD是邊長為3的菱形,且DB=3,A1A=2,點E
在線段BC上,點F在線段D1C1上,且BE=D1F=1.
(1)求證:直線EF∥平面B1D1DB;
(2)求二面角F—DB—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知的三個頂點均在球O的球面上,且AB=AC=1,,直線OA與平面ABC所成的角的正弦值為,則球面上B、C兩點間的球面距離為       。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


(8分)
如圖,在四面體中,,點分別是的中點.求證:
(1)直線;
(2)平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)直棱柱中,底面是直角梯形,
(Ⅰ)求證:
(Ⅱ)在上是否存一點,使得與平面
與平面都平行?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


第Ⅱ卷(非選擇題,共90分)
二、填空題:(本大題4小題,每小題5分,滿分20分)
13.用一個平面去截正方體,其截面是一個多邊形,則這個多邊形的邊數(shù)最多是    條 。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文)(本小題8分)
如圖,在四棱錐中,平面,,,
(1)求證:;
(2)求點到平面的距離
證明:(1)平面,

平面 (4分)
(2)設點到平面的距離為
,,
求得即點到平面的距離為              (8分)
(其它方法可參照上述評分標準給分)

查看答案和解析>>

同步練習冊答案