【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為 ,且直線l經(jīng)過橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求|FA||FB|的值.

【答案】
(1)解:橢圓C化為5ρ2cos2θ+9ρ2sin2θ=45,∴5x2+9y2=45,

∴橢圓的標(biāo)準(zhǔn)方程: .設(shè)橢圓C的內(nèi)接矩形PMNQ中,P的坐標(biāo)為 ,

∴橢圓C的內(nèi)接矩形PMNQ面積最大值為


(2)解:由橢圓C的方程 ,得橢圓C的右焦點(diǎn)F(2,0),由直線l經(jīng)過右焦點(diǎn)F(2,0),得m=2,

易得直線l的參數(shù)方程可化為 為參數(shù)),代入到5x2+9y2=45,整理得,8t2+10t﹣25=0,

,即

|FA||FB|的值


【解析】(1)將橢圓的極坐標(biāo)方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,設(shè)P點(diǎn)坐標(biāo),根據(jù)二倍角公式及正弦函數(shù)的性質(zhì),即可求得橢圓C的內(nèi)接矩形PMNQ面積的最大值;(2)將參數(shù)方程代入橢圓的標(biāo)準(zhǔn)方程,由韋達(dá)定理即可求得 ,即可求得|FA||FB|的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=4,nan+1﹣(n+1)an=2n2+2n.
(Ⅰ)求證:數(shù)列 是等差數(shù)列;
(Ⅱ)求數(shù)列 的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足 =logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某店銷售進(jìn)價(jià)為2元/件的產(chǎn)品,該店產(chǎn)品每日的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足關(guān)系式,其中.

(1)若產(chǎn)品銷售價(jià)格為4元/件,求該店每日銷售產(chǎn)品所獲得的利潤;

(2)試確定產(chǎn)品的銷售價(jià)格,使該店每日銷售產(chǎn)品所獲得的利潤最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,底面ABCD為平行四邊形,∠BAD=120°,M為CD上的點(diǎn).且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求證:AM⊥A1B;
(2)若M為CD的中點(diǎn),N為棱DD1上的點(diǎn),且MN與平面A1BD所成角的正弦值為 ,試求DN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線

(1)求曲線在點(diǎn)處的切線方程;

(2)求過點(diǎn)的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓錐的軸截面SAB是邊長為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長度為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代名著《九章算術(shù)》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤.?dāng)啬┮怀,重二斤.”意思是:“現(xiàn)有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構(gòu)成等差數(shù)列.”則下列說法錯(cuò)誤的是(
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對(duì)值為0.5斤

查看答案和解析>>

同步練習(xí)冊(cè)答案