21.(本小題滿分14分)
已知直線過拋物線的焦點且與拋物線相交于兩點,自向準線作垂線,垂足分別為 
(1)求拋物線的方程;
(2)證明:無論取何實數(shù)時,都是定值;
(3)記的面積分別為,試判斷是否成立,并證明你的結(jié)論.
(1)解:由條件知在直線上,即,

所以拋物線的方程為.………………3分
(2) 由 得.…………4分
.………………5分
,即有定值,.………………7分
(3) 根據(jù)條件有
由拋物線的定義得,………………9分
于是,,.………11分
……………12分

 ,
則有.………………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標;若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點軸的垂線,垂足為,過點作直線,交線段于點,連接,使,若存在,求出點的坐標;若不存在,說明理由.
      圖1                       圖2                          圖3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線上距離點A的最近點恰好是拋物線的頂點,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,點P是曲線C上任意一點,點P到兩點,的距離之和等于4,直線與C交于A,B兩點.
(Ⅰ)寫出C的方程;
(Ⅱ)若,求k的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于拋物線C:,我們稱滿足的點在拋物線的內(nèi)部.若點在拋物線內(nèi)部,則直線與曲線C  (     )  
. 恰有一個公共點                         . 恰有2個公共點
. 可能有一個公共點,也可能有兩個公共點    . 沒有公共點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)拋物線的焦點為F,過點M(-1,0)的直線在第一象限交拋物線于A、B,使,則直線AB的斜率(  )
         B     C      D 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

4. 過點P(2,4)且與拋物線y2=8x有且只有一個公共點的的直線有 (  )
A.0條B.1條C. 2條D. 3條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)拋物線(p為常數(shù))的準線與X軸交于點K,過K的直線l與拋物線交于A、B兩點,則=         。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線的焦點在x軸上,經(jīng)過焦點且傾斜角為的直線,被拋物線所截得的弦長為8,試求拋物線的標準方程.

查看答案和解析>>

同步練習冊答案