如圖,過(guò)點(diǎn)(0,a3)(0<a<2)的兩直線與拋物線y=-ax2相切于A,B兩點(diǎn),AD,BC垂直于直線y=-8,垂足分別為D、C,求矩形ABCD面積的最大值.

【答案】分析:設(shè)切點(diǎn)為(x,y),則y=-ax2,把點(diǎn)(0,a3)代入切線方程求得x=±a,y=-a3,可得AB=2a,BC=8-a3,所以矩形面積為S=16a-2a4(0<a<2 ),由S'=16-8a3,可得當(dāng)時(shí),S有最大值為
解答:解:設(shè)切點(diǎn)為(x,y),則y=-ax2
因?yàn)閥'=-2ax,所以切線方程為y-y=-2ax(x-x),即y+ax2=-2ax(x-x),---(2分)
因?yàn)榍芯過(guò)點(diǎn)(0,a3),所以a3+ax2=-2ax(0-x),即a3=ax2,于是x=±a.-----(2分)
將代入 y=-ax2 得,y=-a3.-----(2分)
(若設(shè)切線方程為y=kx+a3,代入拋物線方程后由△=0得到切點(diǎn)坐標(biāo),亦予認(rèn)可.)
所以AB=2a,BC=8-a3,所以矩形面積為S=16a-2a4(0<a<2).----(3分)
于是S'=16-8a3.所以當(dāng)時(shí),S'>0;當(dāng)時(shí),S'<0;
故當(dāng)時(shí),S有最大值為.----(3分)
點(diǎn)評(píng):本題主要考查拋物線的標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)點(diǎn)(0,a3)(0<a<2)的兩直線與拋物線y=-ax2相切于A,B兩點(diǎn),AD,BC垂直于直線y=-8,垂足分別為D、C,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)點(diǎn)(0,a3)的兩直線與拋物線y=-ax2相切于A、B兩點(diǎn),AD、BC垂直于直線y=-8,垂足分別為D、C.
(1)若a=1,求矩形ABCD面積;
(2)若a∈(0,2),求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,過(guò)點(diǎn)(0,a3)的兩直線與拋物線y=-ax2相切于A、B兩點(diǎn),AD、BC垂直于直線y=-8,垂足分別為D、C.
(1)若a=1,求矩形ABCD面積;
(2)若a∈(0,2),求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)寧市泗水一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,過(guò)點(diǎn)(0,a3)的兩直線與拋物線y=-ax2相切于A、B兩點(diǎn),AD、BC垂直于直線y=-8,垂足分別為D、C.
(1)若a=1,求矩形ABCD面積;
(2)若a∈(0,2),求矩形ABCD面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案