【題目】如圖所示的算法流程圖中,輸出S的值為(

A.32
B.42
C.52
D.63

【答案】C
【解析】解:運(yùn)行算法,可得:
第一次S=3,i=4,i<10;
第二次S=3+4,i=5,i<10;
第三次S=3+4+5,i=6,i<10;
第四次S=3+4+5+6,i=7,i<10;
第五次S=3+4+5+6+7,i=8,i<10;
第六次S=3+4+5+6+7+8,i=9,i<10;
第七次S=3+4+5+6+7+8+9,i=10,i=10;
第八次S=3+4+5+6+7+8+9+10,i=11,i>10;
滿足判斷框中的條件,結(jié)束循環(huán),此時輸出S=52,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,D是BC的中點(diǎn).

(1)若E為B1C1的中點(diǎn),求證:BE∥平面AC1D;
(2)若平面B1BCC1⊥平面ABC,且AB=AC,求證:平面AC1D⊥平面B1BCC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用a代表紅球,b代表藍(lán)球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍(lán)球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”表示把紅球和藍(lán)球都取出來,以此類推,下列各式中,其展開式可用來表示從3個無區(qū)別的紅球、3個無區(qū)別的藍(lán)球、2個有區(qū)別的黑球中取出若干個球,且所有藍(lán)球都取出或都不取出的所有取法的是
①(1+a+a2+a3)(1+b3)(1+c)2
②(1+a3)(1+b+b2+b3)(1+c)2
③(1+a)3(1+b+b2+b3)(1+c2
④(1+a3)(1+b)3(1+c+c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (θ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ=﹣2.
(1)求C1和C2在直角坐標(biāo)系下的普通方程;
(2)已知直線l:y=x和曲線C1交于M,N兩點(diǎn),求弦MN中點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓M:的左頂點(diǎn)為、中心為,若橢圓M過點(diǎn),且

1)求橢圓M的方程;

2)若△APQ的頂點(diǎn)Q也在橢圓M上,試求△APQ面積的最大值;

3)過點(diǎn)作兩條斜率分別為的直線交橢圓M兩點(diǎn),且,求證:直線恒過一個定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:(x﹣1)2+(y﹣3)2=1,圓C2:(x﹣6)2+(y﹣1)2=1,M,N分別是圓C1 , C2上的動點(diǎn),P為直線x﹣y﹣2=0上的動點(diǎn),則||PM|﹣|PN||的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱柱中,中點(diǎn),上的一點(diǎn),.

(1)若平面,求證:.

(2)平面將棱柱分割為兩個幾何體,記上面一個幾何體的體積為,下面一個幾何體的體積為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+n,n∈N*
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an=4log2bn+3,n∈N* , 求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對的邊長分別為a,b,c且滿足csinA= acosC,則sinA+sinB的最大值是(
A.1
B.
C.3
D.

查看答案和解析>>

同步練習(xí)冊答案