【題目】已知正△ABC三個頂點都在半徑為2的球面上,球心O到平面ABC的距離為1,點E是線段AB的中點,過點E作球O的截面,則截面面積的最小值是

【答案】
【解析】解:設正△ABC的中心為O1 , 連結(jié)O1O、O1C、O1E、OE,
∵O1是正△ABC的中心,A、B、C三點都在球面上,
∴O1O⊥平面ABC,結(jié)合O1C平面ABC,可得O1O⊥O1C,
∵球的半徑R=2,球心O到平面ABC的距離為1,得O1O=1,
∴Rt△O1OC中,O1C=
又∵E為AB的中點,∴Rt△O1EC中,O1E=O1C=
∴Rt△OO1E中,OE=
∵過E作球O的截面,當截面與OE垂直時,截面圓的半徑最小,
∴當截面與OE垂直時,截面圓的面積有最小值.
此時截面圓的半徑r=
可得截面面積為S=πr2=
故答案為:

設正△ABC的中心為O1 , 連結(jié)O1O、O1C、O1E、OE.根據(jù)球的截面圓性質(zhì)、正三角形的性質(zhì)與勾股定理,結(jié)合題中數(shù)據(jù)算出OE.而經(jīng)過點E的球O的截面,當截面與OE垂直時截面圓的半徑最小,相應地截面圓的面積有最小值,由此算出截面圓半徑的最小值,從而可得截面面積的最小值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(3+x)+ln(3﹣x).
(Ⅰ)求函數(shù)y=f(x)的定義域;
(Ⅱ)判斷函數(shù)y=f(x)的奇偶性;
(Ⅲ)若f(2m﹣1)<f(m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), (其中).對于不相等的實數(shù),設, .現(xiàn)有如下命題:

(1)對于任意不相等的實數(shù),都有

(2)對于任意的a及任意不相等的實數(shù),都有

(3)對于任意的a,存在不相等的實數(shù),使得;

(4)對于任意的a,存在不相等的實數(shù),使得.

其中的真命題有_____________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有正整數(shù)構(gòu)成的數(shù)表如下:

第一行:1

第二行:1 2

第三行:1 1 2 3

第四行:1 1 2 1 1 2 3 4

第五行:1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5

…… …… ……

行:先抄寫第1行,接著按原序抄寫第2行,然后按原序抄寫第3行,...,直至按原序抄寫第行,最后添上數(shù).(如第四行,先抄寫第一行的數(shù)1,接著按原序抄寫第二行的數(shù)1,2,接著按原序抄寫第三行的數(shù)1,1,2,3,最后添上數(shù)4).

將按照上述方式寫下的第個數(shù)記作(如

(1)用表示數(shù)表第行的數(shù)的個數(shù),求數(shù)列的前項和;

(2)第8行中的數(shù)是否超過73個?若是,用表示第8行中的第73個數(shù),試求的值;若不是,請說明理由;

(3)令,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓相交于不同的兩點 .

(1)求圓的圓心坐標;

(2)求線段的中點的軌跡的方程;

(3)是否存在實數(shù),使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處的切線方程為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若為整數(shù),當時, 恒成立,求的最大值(其中的導函數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是等差數(shù)列的前項和,已知 , .

1)求;

2若數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是橢圓 上的一點,橢圓的右焦點為,斜率為的直線交橢圓、兩點,且、、三點互不重合.

(1)求橢圓的方程;

(2)求證:直線, 的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中, 為棱上一動點, 為底面上一動點, 的中點,若點都運動時,點構(gòu)成的點集是一個空間幾何體,則這個幾何體是(

A. 棱柱 B. 棱臺 C. 棱錐 D. 球的一部分

查看答案和解析>>

同步練習冊答案