【題目】如圖,已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B,C在該拋物線上,其中A,C關(guān)于x軸對(duì)稱(A在第一象限),且直線BC經(jīng)過點(diǎn)F.

(1)若△ABC的重心為G( ),求直線AB的方程;
(2)設(shè)SABO=S1 , SCFO=S2 , 其中O為坐標(biāo)原點(diǎn),求S12+S22的最小值.

【答案】
(1)解:設(shè)A(x1,y1),B(x2,y2),C(x1,﹣y1),

則△ABC的重心坐標(biāo)為G( ),

由題意可得2x1+x2= ,且y2=4,

由y22=4x2,y12=4x1

可得x2=4,y2=4,和x1= ,y1=1,

直線AB的斜率k= = ,

即有直線AB的方程為4x﹣5y+4=0;


(2)解:設(shè)A(x1,y1),B(x2,y2),C(x1,﹣y1),

設(shè)直線BC:x=my+1,代入拋物線方程y2=4x,可得

y2﹣4my﹣4=0,可得﹣y1y2=﹣4,即y1y2=4,

再設(shè)直線AB:y=kx+n,代入拋物線方程,可得

ky2﹣4y+4n=0,y1y2= =4,即n=k,

則有直線AB:y=k(x+1),即有直線AB恒過定點(diǎn)E(﹣1,0),

則SABO= |OE||y2﹣y1|= |y2﹣y1|,

SCFO= |OF||y1|= |y1|,

即有S12+S22= (y2﹣y12+ y12= = (2y12+ ﹣8)

(2 ﹣8)=2 ﹣2.

即有S12+S22的最小值為2 ﹣2,當(dāng)且僅當(dāng)y1= ,y2=


【解析】(1)設(shè)A(x1 , y1),B(x2 , y2),C(x1 , ﹣y1),運(yùn)用三角形的重心坐標(biāo)公式和拋物線方程,即可求得A,B的坐標(biāo),進(jìn)而得到直線方程;(2)通過直線BC,AB的方程和拋物線方程,運(yùn)用韋達(dá)定理,可得恒過定點(diǎn)(﹣1,0),即有SABO= |OE||y2﹣y1|= |y2﹣y1|,SCFO= |OF||y1|= |y1|,y1y2=4,再由基本不等式計(jì)算即可得到最小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】;給定函數(shù)① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一直線l過直線l1:3x﹣y=3和直線l2:x﹣2y=2的交點(diǎn)P,且與直線l3:x﹣y+1=0垂直.
(1)求直線l的方程;
(2)若直線l與圓心在x正半軸上的半徑為 的圓C相切,求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 的左、右焦點(diǎn)分別為F1 , F2 , 離心率為e,過F2的直線與橢圓的交于A,B兩點(diǎn),若△F1AB是以A為頂點(diǎn)的等腰直角三角形,則e2=(
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一四棱錐P﹣ABCD的三視圖如圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(Ⅰ)求四棱錐P﹣ABCD的體積.
(Ⅱ)若點(diǎn)E為PC的中點(diǎn),AC∩BD=O,求證:EO∥平面PAD;
(Ⅲ)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的函數(shù)f(x)是最小正周期2π的偶函數(shù),f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π),且x≠ 時(shí),(x﹣ )f′(x)>0,則函數(shù)y=f(x)﹣sinx在[﹣2π,2π]上的零點(diǎn)個(gè)數(shù)為(
A.2
B.4
C.5
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2bx+c,且f(1)=f(3)=﹣1.設(shè)a>0,將函數(shù)f(x)的圖象先向右平移a個(gè)單位長度,再向下平移a2個(gè)單位長度,得到函數(shù)g(x)的圖象. (Ⅰ)若函數(shù)g(x)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<4<x2 , 求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)連續(xù)函數(shù)在區(qū)間[m,n]上的值域?yàn)閇λ,μ],若有 ,則稱該函數(shù)為“陡峭函數(shù)”.若函數(shù)g(x)在區(qū)間[a,2a]上為“陡峭函數(shù)”,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:四棱錐P﹣ABCD中,底面ABCD是平行四邊形,且AC=BD,PA⊥底面ABCD,PA=AB=1, ,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動(dòng).
(1)證明:當(dāng)點(diǎn)E在邊BC上移動(dòng)時(shí),總有EF⊥AF;
(2)當(dāng)CE等于何值時(shí),PA與平面PDE所成角的大小為45°.

查看答案和解析>>

同步練習(xí)冊答案