【題目】一個(gè)盒子裝有六張卡片,上面分別寫(xiě)著如下六個(gè)定義域?yàn)?/span>的函數(shù):
(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得一個(gè)新函數(shù),求所得函數(shù)是奇函數(shù)的概率;
(2)現(xiàn)從盒子中進(jìn)行逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行,求抽取次數(shù)的分布列和數(shù)學(xué)期望.
【答案】(1);(2)ξ的數(shù)學(xué)期望為
【解析】試題分析:(1)由任意兩個(gè)奇函數(shù)的和為奇函數(shù),而原來(lái)的六個(gè)函數(shù)中奇函數(shù)有三個(gè),故可用古典概型求解;(2)ξ可取1,2,3,4,ξ=k的含義為前k-1次取出的均為奇函數(shù),第k次取出的是偶函數(shù),分別求概率,列出分布列,再求期望即可.
試題解析:(1)記事件A為“任取兩張卡片,將卡片上的函數(shù)相加得到的函數(shù)是奇函數(shù)”,由題意知.
(2)ξ可取1,2,3,4,;
故ξ的分布列為
ξ的數(shù)學(xué)期望為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的極坐標(biāo)方程;
(2)求曲線與焦點(diǎn)的極坐標(biāo),其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的多面體中, 是平行四邊形, 是矩形, 面, , .
(Ⅰ)求證:平面平面;
(Ⅱ)若,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,其中.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,在區(qū)間內(nèi)均存在零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,其中.
(1)求函數(shù)的極大值點(diǎn);
(2)當(dāng)時(shí),若在上至少存在一點(diǎn),使成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長(zhǎng).設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
(1)求y關(guān)于t的回歸方程 .
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2015年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程 中
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求函數(shù)h(x)的定義域,判斷h(x)的奇偶性,并說(shuō)明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣12x+4,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)過(guò)點(diǎn)(1, ),離心率為 ,過(guò)橢圓右頂點(diǎn)A的兩條斜率乘積為﹣ 的直線分別交橢圓C于M,N兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線MN是否過(guò)定點(diǎn)D?若過(guò)定點(diǎn)D,求出點(diǎn)D的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com