【題目】如圖,正方體的棱長為 1, 為的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).
①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.
科目:高中數(shù)學 來源: 題型:
【題目】在三棱柱中,側(cè)面為矩形, , , 為的中點, 與交于點, 側(cè)面.
(1)證明: ;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本題滿分12分)在平面直角坐標系xOy中,已知兩點和,動點M滿足,設(shè)點M的軌跡為C,半拋物線:(),設(shè)點.
(Ⅰ)求C的軌跡方程;
(Ⅱ)設(shè)點T是曲線上一點,曲線在點T處的切線與曲線C相交于點A和點B,求△ABD的面積的最大值及點T的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓Cx2+y2+2x﹣4y+3=0
(1)已知不過原點的直線l與圓C相切,且在x軸,y軸上的截距相等,求直線l的方程;
(2)求經(jīng)過原點且被圓C截得的線段長為2的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
(1)若,求在區(qū)間[0,3]上的最大值;
(2)若,寫出的單調(diào)區(qū)間;
(3)若存在,使得方程有三個不相等的實數(shù)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8、高為4的等腰三角形,側(cè)視圖是一個底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會的參會人數(shù)(萬人)與餐廳所用原材料數(shù)量(袋),得到如下數(shù)據(jù):
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)已知購買原材料的費用(元)與數(shù)量(袋)的關(guān)系為投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費用).
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,直線的方程為,點是拋物線上到直線距離最小的點,點是拋物線上異于點的點,直線與直線交于點,過點與軸平行的直線與拋物線交于點.
(1)求點的坐標;
(2)求證:直線恒過定點;
(3)在(2)的條件下過向軸做垂線,垂足為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐A﹣BCD中,AB⊥平面BCD,BC⊥CD,且AB=3,BD=4,則三棱錐A﹣BCD外接球的半徑為( )
A.2
B.3
C.4
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com