(本題滿分12分)如圖,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一點P在平面ABC內(nèi)的射影是AB中點M,二面角P—AC—B的大小為45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,已知四棱錐P-ABCD,側(cè)面PAD為邊長等于2的正三角形,底面ABCD為菱形,∠DAB=60°.
(1)證明:∠PBC=90°;
(2)若PB=3,求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)如圖①,直角梯形中,,點分別在上,且,現(xiàn)將梯形A沿折起,使平面與平面垂直(如圖②).
(1)求證:平面;
(2)當時,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題分12分)
如圖,在長方體中,
,為中點.
(Ⅰ)求證:;
(Ⅱ)在棱上是否存在一點,使得平面?若存在,求的長;若不存在,說明理由.
(Ⅲ)若二面角的大小為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知矩形ABCD所在平面外一點P,PA⊥平面ABCD,E、F分別是 AB、PC的中點.
(1) 求證:EF∥平面PAD;
(2) 求證:EF⊥CD;
(3) 若∠PDA=45°,求EF與平面ABCD所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)四棱錐中,底面為矩形,側(cè)面底面,,,.
(Ⅰ)證明:;
(Ⅱ)設(shè)與平面所成的角為,
求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,兩條異面直線AB,CD與三個平行平面α,β,γ分別相交于A,E,B及
C,F,D,又AD、BC與平面β的交點為H,G.
求證:四邊形EHFG為平行四邊形。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com