【題目】如圖,分別過橢圓左、右焦點(diǎn)的動直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率滿足.已知當(dāng)軸重合時,,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點(diǎn)使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說明理由.

【答案】(Ⅰ);,.

【解析】試題分析:(1)當(dāng)軸重合時,垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).

試題解析:當(dāng)軸重合時,, ,所以垂直于軸,得,,, ,橢圓的方程為.

焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線斜率不存在時,點(diǎn)坐標(biāo)為;

當(dāng)直線斜率存在時,設(shè)斜率分別為, 設(shè), 得:

, 所以:,, 則:

. 同理:, 因?yàn)?/span>

, 所以, , 由題意知, 所以

, 設(shè),則,即,由當(dāng)直線斜率不存在時,點(diǎn)坐標(biāo)為也滿足此方程,所以點(diǎn)在橢圓.存在點(diǎn)和點(diǎn),使得為定值,定值為.

考點(diǎn):圓錐曲線的定義,性質(zhì),方程.

【方法點(diǎn)晴】本題是對圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問通過兩個特殊位置,得到基本量,得,,從而得橢圓的方程,第二問由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).

型】解答
結(jié)束】
21

【題目】已知,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個零點(diǎn)為,記,證明:

【答案】(Ⅰ)極大值為,無極小值;證明見解析.

【解析】分析:(Ⅰ)先判斷函數(shù)上的單調(diào)性,然后可得當(dāng)時,有極大值,無極小值.不妨設(shè),由題意可得,,又由條件得,構(gòu)造,令,則,利用導(dǎo)數(shù)可得,故得,,所以

詳解:(Ⅰ),

,

且當(dāng)時,,即上單調(diào)遞增,

當(dāng)時,,即上單調(diào)遞減,

∴當(dāng)時,有極大值,且無極小值.

(Ⅱ)函數(shù)的兩個零點(diǎn)為,不妨設(shè),

,

,

,

,

,則

,

上單調(diào)遞減,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】寫出下列命題的否定,并判斷所得命題的真假:

1;

2)有的三角形是等邊三角形;

3)有一個偶數(shù)是素數(shù)

4)任意兩個等邊三角形都相似;

5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;

Ⅱ)將表示為的函數(shù),求出該函數(shù)表達(dá)式;

Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點(diǎn)值(組中值代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是二次函數(shù),不等式<0的解集是(0,5),且在區(qū)間[1,4]上的最大值是12

1)求的解析式.

2)作出二次函數(shù)y= [14]上的圖像并求出值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, , 的中點(diǎn),以為折痕將向上折起, 變?yōu)?/span>,且平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】未來創(chuàng)造業(yè)對零件的精度要求越來越高.打印通常是采用數(shù)字技術(shù)材料打印機(jī)來實(shí)現(xiàn)的,常在模具制造、工業(yè)設(shè)計等領(lǐng)域被用于制造模型,后逐漸用于一些產(chǎn)品的直接制造,已經(jīng)有使用這種技術(shù)打印而成的零部件.該技術(shù)應(yīng)用十分廣泛,可以預(yù)計在未來會有發(fā)展空間.某制造企業(yè)向高校打印實(shí)驗(yàn)團(tuán)隊(duì)租用一臺打印設(shè)備,用于打印一批對內(nèi)徑有較高精度要求的零件.該團(tuán)隊(duì)在實(shí)驗(yàn)室打印出了一批這樣的零件,從中隨機(jī)抽取個零件,度量其內(nèi)徑的莖葉圖如圖(單位:).

(1)計算平均值與標(biāo)準(zhǔn)差;

(2)假設(shè)這臺打印設(shè)備打印出品的零件內(nèi)徑服從正態(tài)分布,該團(tuán)隊(duì)到工廠安裝調(diào)試后,試打了個零件,度量其內(nèi)徑分別為(單位:):、、,試問此打印設(shè)備是否需要進(jìn)一步調(diào)試?為什么?

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個頂點(diǎn)到平面的距離分別是3,3,6,則其重心到平面的距離為__________.(寫出所有可能值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊答案