定義區(qū)間[x1,x2]的長度為x2-x1.若函數(shù)y=|log2x|的定義域?yàn)閇a,b],值域?yàn)閇0,2],則區(qū)間[a,b]的長度的最大值為(  )
A、
15
2
B、
15
4
C、3
D、
3
4
考點(diǎn):對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先由函數(shù)值域求出函數(shù)定義域的取值范圍,然后求出區(qū)間[a,b]的長度的最大值.
解答:解:∴函數(shù)y=|log2x|的定義域?yàn)閇a,b],值域?yàn)閇0,2],
∴-2≤log2x≤2,
解得
1
4
≤x≤4,故函數(shù)的定義域?yàn)閇
1
4
,4],
此時(shí),函數(shù)的定義域的區(qū)間長度為4-
1
4
=
15
4
,
故選:B.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的定義域和值域,考查學(xué)生發(fā)現(xiàn)問題解決問題的能力,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若全集U={a,b,c,d},A={a,b},B={c},則集合dnwyfom等于(  )
A、∁U(A∪B)B、A∪BC、A∩BD、∁U(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在區(qū)間(1,+∞)上是增函數(shù)的是( 。
A、y=-x+1
B、y=31-x
C、y=-(x-1)2
D、y=
1
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x2+1)的值域?yàn)閧0,1,2},則滿足這樣條件的函數(shù)的個(gè)數(shù)為( 。
A、8B、9C、26D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=lnπ,b=log52,c=e -
1
2
,則( 。
A、a<b<c
B、c<b<a
C、b<c<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|loga|x-1||(a>0,a≠1),若x1<x2<x3<x4,x1x2x3x4≠0且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2+x3+x4=(  )
A、2B、4C、8D、隨a值變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2,x≤0
lnx,x>0.
,若函數(shù)y=|f(x)|-k的零點(diǎn)恰有四個(gè),則實(shí)數(shù)k的取值范圍為( 。
A、(1,2]
B、(1,2)
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4
x+1,x≤1
lnx,x>1
,則方程f(x)=ax恰有兩個(gè)不同實(shí)數(shù)根時(shí),實(shí)數(shù)a的取值范圍是( 。ㄗⅲ篹為自然對(duì)數(shù)的底數(shù))
A、(0,
1
e
B、[
1
4
,
1
e
]
C、(0,
1
4
D、[
1
4
,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+
1
x
,
x∈[-2,-1]
-2,x∈[-1,
1
2
)
x-
1
x
x∈[
1
2
,2]
,函數(shù)g(x)=ax-2,x∈[-2,2],對(duì)任意x1∈[-2,2],總存在x∈[-2,2],使得g(x)=f(x)成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案