【題目】從裝有2只紅球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.

(Ⅰ)若抽取后又放回,抽3次.

(ⅰ)分別求恰2次為紅球的概率及抽全三種顏色球的概率;

(ⅱ)求抽到紅球次數(shù)的數(shù)學期望及方差.

(Ⅱ)若抽取后不放回,寫出抽完紅球所需次數(shù)的分布列.

【答案】(1);②見解析;(2)見解析.

【解析】分析:(1)(ⅰ)放回事件是獨立重復(fù)試驗,根據(jù)獨立重復(fù)試驗概率公式求結(jié)果,(ⅱ) 抽到紅球次數(shù)服從二項分布,根據(jù)二項分布期望與方差公式求結(jié)果,(2)先確定隨機變量取法,再根據(jù)組合數(shù)求對應(yīng)概率,列表可得分布列.

詳解:(1)抽1次得到紅球的概率為,得白球的概率為得黑球的概率為

①所以恰2次為紅色球的概率為

抽全三種顏色的概率

~B(3,),,

(2)的可能取值為2,3,4,5

, ,

,

即分布列為:

2

3

4

5

P

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點M(x0 , y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O),當x0=1﹣ 時,切線MA的斜率為﹣

(1)求P的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某建材商場國慶期間搞促銷活動,規(guī)定:顧客購物總金額不超過800元,不享受任何折扣;如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,并按下表折扣分別累計計算:

可以享受折扣優(yōu)惠金額

折扣率

不超過500元的部分

超過500元的部分

若某顧客在此商場獲得的折扣金額為50元,則此人購物實際所付金額為  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為1,線段上有兩個動點 , 且 , 則下列結(jié)論中錯誤的是( )

A.
B.三棱錐的體積為定值
C.二面角的大小為定值
D.異面直線所成角為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 ( ).

A. 某校高三有8個班,1班有51人,2班有53人,3班有52人,由此推測各班人數(shù)都超過50人

B. 由三角形的性質(zhì),推測空間四面體的性質(zhì)

C. 平行四邊形的對角線互相平分,菱形是平行四邊形,所以菱形的對角線互相平分

D. 在數(shù)列{an}中,a1=1,,,,由此歸納出{an}的通項公式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一圓臺上底半徑為5cm,下底半徑為10cm,母線AB長為20cm,其中A在上底面上,B在下底面上,從AB中點M,拉一條繩子,繞圓臺的側(cè)面一周轉(zhuǎn)到B點,則這條繩子最短長為 cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yfx)是偶函數(shù),當x0時,;當x[3,﹣1]時,記fx)的最大值為m,最小值為n,則mn________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中AA1=AD=1,E為CD中點.
(Ⅰ)求證:B1E⊥AD1;
(Ⅱ)在棱AA1上是否存在一點P,使得DP∥平面B1AE?若存在,求AP的長;若不存在,說明理由.
(Ⅲ)若二面角A﹣B1E﹣A1的大小為30°,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了增強環(huán)保意識,某社團從男生中隨機抽取了60人,從女生中隨機抽取了50人參加環(huán)保知識測試,統(tǒng)計數(shù)據(jù)如下表所示:

優(yōu)秀

非優(yōu)秀

總計

男生

40

20

60

女生

20

30

50

總計

60

50

110

(1)試判斷是否有99%的把握認為環(huán)保知識是否優(yōu)秀與性別有關(guān);

(2)為參加市舉辦的環(huán)保知識競賽,學校舉辦預(yù)選賽,現(xiàn)在環(huán)保測試優(yōu)秀的同學中選3人參加預(yù)選賽,已知在環(huán)保測試中優(yōu)秀的同學通過預(yù)選賽的概率為,若隨機變量表示這3人中通過預(yù)選賽的人數(shù),求的分布列與數(shù)學期望.

附:

0.500

0.400

0.100

0.010

0.001

0.455

0.708

2.706

6.635

10.828

查看答案和解析>>

同步練習冊答案