分析 (Ⅰ)推導(dǎo)出EF∥BC,GF∥DC,從而平面EFG∥平面ABCD,由此能證明AC∥平面EFG.
(Ⅱ)根據(jù)條件,直線AB,AD,AP兩兩垂直,分別以直線AB,AD,AP為x,y,z軸,建立空間直角坐標(biāo)系A(chǔ)-xyz.利用向量法能求出二面角A-PC-D的余弦值.
解答 (本題滿分12分)
證明:(Ⅰ)∵點(diǎn)E、F、G分別是PB、PC、PD的中點(diǎn),
∴EF∥BC,GF∥DC.…(1分)
∵EF?平面ABCD,GF?平面ABCD,BC?平面ABCD,DC?平面ABCD,
∴EF∥平面ABCD,GF∥平面ABCD.…(3分)
∵EF∩GF=F,∴平面EFG∥平面ABCD.…(5分)
∵AC?平面ABCD,∴AC∥平面EFG. …(6分)
解:(Ⅱ)根據(jù)條件,直線AB,AD,AP兩兩垂直,分別以直線AB,AD,AP為x,y,z軸,
建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz.
設(shè)DC=2AB=2AD=2AP=2,則C(2,1,0),D(0,1,0),P(0,0,1),
$\overrightarrow{AC}$=(2,1,0),$\overrightarrow{AP}$=(0,0,1),$\overrightarrow{DC}$=(2,0,0),$\overrightarrow{DP}$=(0,-1,1).…(8分)
設(shè)$\overrightarrow{n}=(x,y,z)$,$\overrightarrow{m}=(a,b,c)$分別是平面ACP和平面CDP的一個(gè)法向量,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=2x+y=0}\\{\overrightarrow{n}•\overrightarrow{AP}=z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}=(1,-2,0)$,
$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DC}=2a=0}\\{\overrightarrow{m}•\overrightarrow{DP}=-b+c=0}\end{array}\right.$,取b=1,得$\overrightarrow{m}$=(0,1,1).…(10分)
∴cos<$\overrightarrow{n},\overrightarrow{m}$>=$\frac{\overrightarrow{n}•\overrightarrow{m}}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{-2}{\sqrt{5}×\sqrt{2}}$=-$\frac{\sqrt{10}}{5}$.…(11分)
∵二面角A-PC-D是銳角,
∴二面角A-PC-D的余弦值是$\frac{\sqrt{10}}{5}$.…(12分)
點(diǎn)評 本題考查線面平行的證明,考查二面角的余弦值的求不地,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2\sqrt{6}}{3}$ | B. | 0 | C. | 1 | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{{e}^{2}}{4}$,+∞) | B. | [$\frac{{e}^{2}}{8}$,+∞) | C. | (0,$\frac{{e}^{2}}{4}$] | D. | (0,$\frac{{e}^{2}}{8}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com