【題目】設函數(shù) ,a為常數(shù),且f(3)=
(1)求a值;
(2)求使f(x)≥4的x值的取值范圍;
(3)設g(x)=﹣ x+m,對于區(qū)間[3,4]上每一個x值,不等式f(x)>g(x)恒成立,求實數(shù)m的取值范圍.
【答案】
(1)解: ,即 ,
∴10﹣3a=1,解得a=3.
(2)由已知 ,
∴10﹣3x≤﹣2.
解得x≥4
故f(x)≥4解集為{x|x≥4}.
(3)依題意f(x)>g(x)化為 恒成立
即 在[3,4]恒成立
設
則m<h(x)min,
∵函數(shù) 與 在[3,4]為增函數(shù),
可得h(x)在[3,4]為增函數(shù),
∴ ,
∴m<2.
【解析】(1)由f(3)=,可得,故有10-3a=1,解出a的值,(2)由已知 ,可得10-3x≤-2,由此解得x的范圍,(3)根據(jù)題意f(x)>g(x)化為恒成立,進行參變分離在[3,4]恒成立,構造函數(shù),找到h(x)min,使得m<h(x)min,可解得m<2.
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q=2,前3項和是7,等差數(shù)列{bn}滿足b1=3,2b2=a2+a4 . (Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)求數(shù)列 的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1),x∈R.
(1)求f(x)的單調遞減區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=﹣1,a= ,且向量 =(3,sinB)與 =(2,sinC)共線,求邊長b和c的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線y2=2px(p>0)的焦點為F,準線為L,A、B是拋物線上的兩個動點,且滿足∠AFB= .設線段AB的中點M在L上的投影為N,則 的最大值是( 。
A.
B.1
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),曲線C的參數(shù)方程: (α為參數(shù)),且直線交曲線C于A,B兩點.
(Ⅰ)將曲線C的參數(shù)方程化為普通方程,并求θ= 時,|AB|的長度;
(Ⅱ)已知點P:(1,0),求當直線傾斜角θ變化時,|PA||PB|的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果函數(shù)f(x)對任意的實數(shù)x,都有f(1+x)=f(﹣x),且當x≥ 時,f(x)=log2(3x﹣1),那么函數(shù)f(x)在[﹣2,0]上的最大值與最小值之和為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( )x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域為R,求實數(shù)a的取值范圍;
(2)當x∈[( )t+1 , ( )t]時,求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負實數(shù)m,n,使得函數(shù)y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為2,點P為面ADD1A1的對角線AD1的中點.PM⊥平面ABCD交AD與M,MN⊥BD于N.
(1)求異面直線PN與A1C1所成角的大小;(結果可用反三角函數(shù)值表示)
(2)求三棱錐P﹣BMN的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設事件A表示“關于x的一元二次方程x2+ax+b2=0有實根”,其中a,b為實常數(shù). (Ⅰ)若a為區(qū)間[0,5]上的整數(shù)值隨機數(shù),b為區(qū)間[0,2]上的整數(shù)值隨機數(shù),求事件A發(fā)生的概率;
(Ⅱ)若a為區(qū)間[0,5]上的均勻隨機數(shù),b為區(qū)間[0,2]上的均勻隨機數(shù),求事件A發(fā)生的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com