(2013•延慶縣一模)在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率為
12
.過(guò)F1的直線交橢圓C于A,B兩點(diǎn),且△ABF2的周長(zhǎng)為8.過(guò)定點(diǎn)M(0,3)的直線l1與橢圓C交于G,H兩點(diǎn)(點(diǎn)G在點(diǎn)M,H之間).
(Ⅰ) 求橢圓C的方程;
(Ⅱ)設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得以PG、PH為鄰邊的平行四邊形為菱形.如果存在,求出m的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
分析:(I)利用橢圓的離心率計(jì)算公式e=
c
a
及其定義即可得到a,b,c,進(jìn)而即可得到橢圓的標(biāo)準(zhǔn)方程;
(II)設(shè)直線l1的方程為y=kx+3(k>0),與橢圓的方程聯(lián)立,由直線與橢圓由兩個(gè)不同的交點(diǎn)?△>0,可得k的取值范圍,及其根與系數(shù)的關(guān)系;
“在x軸上是否存在點(diǎn)P(m,0),使得以PG、PH為鄰邊的平行四邊形為菱形.”等價(jià)于“在x軸上是否存在點(diǎn)P(m,0),使得PN⊥l1”.即可得到用k表示m,利用導(dǎo)數(shù)即可得出取值范圍.
解答:解:(Ⅰ)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,離心率e=
c
a
=
1
2

△ABF2的周長(zhǎng)為|AF1|+|AF2|+|AF1|+|AF2|=4a=8,
解得a=2,c=1,則b2=a2-c2=3,
所以橢圓的方程為
x2
4
+
y2
3
=1

(Ⅱ)直線l1的方程為y=kx+3(k>0),
x2
4
+
y2
3
=1
y=kx+3
,消去y并整理得(3+4k2)x2+24kx+24=0(*),
△=(24k)2-4×24×(3+4k2)>0,解得k>
6
2

設(shè)橢圓的弦GH的中點(diǎn)為N(x0,y0),
則“在x軸上是否存在點(diǎn)P(m,0),使得以PG、PH為鄰邊的平行四邊形為菱形.”等價(jià)于“在x軸上是否存在點(diǎn)P(m,0),使得PN⊥l1”.
設(shè)G(x1,y1),H(x2,y2),由韋達(dá)定理得,x1+x2=-
24k
3+4k2
,
所以x0=
x1+x2
2
=-
12k
3+4k2
,∴y0=kx0+3═
9
3+4k2
,
N(-
12k
3+4k2
,
9
3+4k2
)
kPN=-
9
12k+m(3+4k2)
,
所以,-
9
12k+m(3+4k2)
•k=-1
,解得m=-
3k
3+4k2
(k>
6
2
)

m′(k)=
3(2k-
3
)(2k+
3
)
(3+4k2)2
3(
6
-
3
)(2k+
3
)
(3+4k2)2
>0
,
所以,函數(shù)m=-
3k
3+4k2
(k>
6
2
)
在定義域(
6
2
,+∞)
單調(diào)遞增,m(
6
2
)=-
6
6
,
所以滿足條件的點(diǎn)P(m,0)存在,m的取值范圍為(-
6
6
,+∞)
點(diǎn)評(píng):本題綜合考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)知識(shí)與解題模式,需要較強(qiáng)的推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個(gè)值越高,就代表空氣污染越嚴(yán)重:
PM2.5
日均濃度
0~35 35~75 75~115 115~150 150~250 >250
空氣質(zhì)量級(jí)別 一級(jí) 二級(jí) 三級(jí) 四級(jí) 五級(jí) 六級(jí)
空氣質(zhì)量類型 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
甲、乙兩城市2013年2月份中的15天對(duì)空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測(cè),獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
(Ⅰ)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲、乙兩城市15天內(nèi)哪個(gè)城市空氣質(zhì)量總體較好?(注:不需說(shuō)明理由)
(Ⅱ)在15天內(nèi)任取1天,估計(jì)甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(Ⅲ)在乙城市15個(gè)監(jiān)測(cè)數(shù)據(jù)中任取2個(gè),設(shè)X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的離心率為2,一個(gè)焦點(diǎn)與拋物線y2=16x的焦點(diǎn)相同,則雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)已知函數(shù)f(x)=ax3+bx2-2(a≠0)有且僅有兩個(gè)不同的零點(diǎn)x1,x2,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)已知函數(shù)f(x)=
log4x, x>0
3x, x≤0
,則f[f(
1
16
)]
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•延慶縣一模)如圖,四棱錐P-ABCD的底面ABCD為菱形,∠ABC=60°,PA⊥底面ABCD,PA=AB=2,E為PA的中點(diǎn).
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ)求三棱錐C-PAD的體積VC-PAD;
(Ⅲ)在側(cè)棱PC上是否存在一點(diǎn)M,滿足PC⊥平面MBD,若存在,求PM的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案