5.函數(shù)f(x)=$\sqrt{x-2}$+$\frac{1}{ln(3-x)}$的定義域為(2,3).

分析 要使函數(shù)f(x)有意義,應(yīng)滿足$\left\{\begin{array}{l}{x-2≥0}\\{ln(3-x)≠0}\end{array}\right.$,求出解集即可.

解答 解:函數(shù)f(x)=$\sqrt{x-2}$+$\frac{1}{ln(3-x)}$,
∴$\left\{\begin{array}{l}{x-2≥0}\\{ln(3-x)≠0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≥2}\\{3-x>0}\\{3-x≠1}\end{array}\right.$,
解得2<x<3;
∴f(x)的定義域為(2,3).
故答案為:(2,3).

點評 本題考查了根據(jù)函數(shù)解析式求定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{an}的前n項和Sn=2an-1,則數(shù)列{an}的通項公式為( 。
A.an=2nB.an=2n-1C.an=2n-1D.an=2n-1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為些作了四次試驗,得到的數(shù)據(jù)如下表所示:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(Ⅰ)求出y關(guān)于x的線性回歸方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐標系中畫出回歸直線;
(Ⅱ)試預(yù)測加工10個零件需要多少時間?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( 。▍⒖紨(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10B.3.11C.3.12D.3.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-3x+1,數(shù)列{an}(n∈N+)是遞增的等差數(shù)列,a1=f(x+1),a2=0,a3=f(x-1).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an+2,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}(n∈N+)的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$,$\overrightarrow{m}$=($\sqrt{3}$sinx,cosx),$\overrightarrow{n}$=(cosx,-cosx).
(1)求函數(shù)y=f(x)在x∈[0,$\frac{π}{2}$]時的值域;
(2)在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足c=2,a=3,f(B)=0,求邊b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinAcosC+csinAcosA=$\frac{1}{3}$c,D為AC邊上一點.
(1)若c=2b=4,S△BCD=$\frac{5}{3}$,求DC的長.
(2)若D是AC的中點,且$cosB=\frac{{2\sqrt{5}}}{5},BD=\sqrt{26}$,求△ABC的最短邊的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=loga(x-3)-2過的定點是(4,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面直角坐標系中,已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-4,2),$\overrightarrow{c}$=(x,3),若(2$\overrightarrow{a}$+$\overrightarrow$)∥$\overrightarrow{c}$,則x=( 。
A.-2B.-4C.-3D.-1

查看答案和解析>>

同步練習冊答案