(2003•北京)設(shè)集合A={x|x2-1>0},B={x|log2x>0|},則A∩B等于(  )
分析:先化簡(jiǎn)集合,即解一元二次不等式x2>1,和對(duì)數(shù)不等式log2x>0,再求交集.
解答:解:根據(jù)題意:集合A={x|x<-1或x>1},集合B={x|x>1}
∴A∩B={x|x>1}.
故選A
點(diǎn)評(píng):本題考查集合間的交集的運(yùn)算,應(yīng)注意不等式的正確求解,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)如圖,已知橢圓的長(zhǎng)軸A1A2與x軸平行,短軸B1B2在y軸上,中心M(0,r)(b>r>0
(Ⅰ)寫出橢圓方程并求出焦點(diǎn)坐標(biāo)和離心率;
(Ⅱ)設(shè)直線y=k1x與橢圓交于C(x1,y1),D(x2,y2)(y2>0),直線y=k2x與橢圓次于G(x3,y3),H(x4,y4)(y4>0).求證:
k1x1x2
x1+x2
=
k1x3x4
x3+x4
;
(Ⅲ)對(duì)于(Ⅱ)中的在C,D,G,H,設(shè)CH交x軸于P點(diǎn),GD交x軸于Q點(diǎn),求證:|OP|=|OQ|
(證明過程不考慮CH或GD垂直于x軸的情形)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y1=40.9,y2=80.48,y3=(
1
2
)-1.5
,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請(qǐng)舉一例:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件,①f(-1)=f(1)=0,②對(duì)任意的u、v∈[-1,1],都有|f(u)-f(v)|≤|u-v|
(Ⅰ)證明:對(duì)任意x∈[-1,1],都有x-1≤f(x)≤1-x
(Ⅱ)證明:對(duì)任意的u,v∈[-1,1]都有|f(u)-f(v)|≤1
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x)且使得
|f(u)-f(v)|<|u-v|uv∈[0,
1
2
]
|f(u)-f(v)|=|u-v|uv∈[
1
2
,1]
;若存在請(qǐng)舉一例,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案