已知復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R
( I)若復(fù)數(shù)z=0,求m的值;
( II)若復(fù)數(shù)z為純虛數(shù),求m的值;
( III)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第三象限,求m的取值范圍.

解:(I)∵復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R,若復(fù)數(shù)z=0,
則有 1-m2 =0,且m2-3m+2=0,解得 m=1.
(II)若復(fù)數(shù)z為純虛數(shù),則有1-m2 =0,且m2-3m+2≠0,解得 m=-1.
(III)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第三象限,則有1-m2 <0,且m2-3m+2<0,
解得 1<m<2.
分析:(I)根據(jù)兩個(gè)復(fù)數(shù)相等的充要條件可得 1-m2 =0,且m2-3m+2=0,由此解得m的值.
(II)根據(jù)純虛數(shù)的定義可得,1-m2 =0,且m2-3m+2≠0,由此解得m的值.
(III)由題意可得1-m2 <0,且m2-3m+2<0,由此求得m的取值范圍.
點(diǎn)評:本題主要考查復(fù)數(shù)的基本概念,兩個(gè)復(fù)數(shù)相等的充要條件,一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2-m-6)+(m2-2m-15)i,m∈R
(1)當(dāng)m=3時(shí),求|z|;
(2)當(dāng)m為何值時(shí),z為純虛數(shù);
(3)若復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(1+2m)+(3+m)i,(m∈R).
(1)若復(fù)數(shù)z在復(fù)平面上所對應(yīng)的點(diǎn)在第二象限,求m的取值范圍;
(2)求當(dāng)m為何值時(shí),|z|最小,并求|z|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(1-m2)+(m2-3m+2)i,其中m∈R
( I)若復(fù)數(shù)z=0,求m的值;
( II)若復(fù)數(shù)z為純虛數(shù),求m的值;
( III)若復(fù)數(shù)z在復(fù)平面上所表示的點(diǎn)在第三象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)Z=2m-1+(m+1)i
(1)若復(fù)數(shù)Z所對應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍;
(2)若復(fù)數(shù)|Z|≤
3
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i(m∈R)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)為A.
(1)若復(fù)數(shù)z+4m為純虛數(shù),求實(shí)數(shù)m的值;
(2)若點(diǎn)A在第二象限,求實(shí)數(shù)M的取值范圍;
(3)求|z|的最小值及此時(shí)實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案