【題目】已知一個(gè)5次多項(xiàng)式為f(x)=3x5﹣2x4+5x3﹣2.5x2+1.5x﹣0.7,用秦九韶算法求出這個(gè)多項(xiàng)式當(dāng)x=4時(shí)的值.
【答案】【解答】解:f(x)=3x5﹣2x4+5x3﹣2.5x2+1.5x﹣0.7=((((3x﹣2)x+5)x﹣2.5)x+1.5)x﹣0.7,
v0=3,v1=3×4﹣2=10,v2=10×4+5=45,v3=45×4﹣2.5=177.5,v4=177.5×4+1.5=711.5,v5=711.5×4﹣0.7=2845.3.
【解析】f(x)=3x5﹣2x4+5x3﹣2.5x2+1.5x﹣0.7=((((3x﹣2)x+5)x﹣2.5)x+1.5)x﹣0.7,,即可求出。
【考點(diǎn)精析】利用秦九韶算法對題目進(jìn)行判斷即可得到答案,需要熟知求多項(xiàng)式的值時(shí),首先計(jì)算最內(nèi)層括號內(nèi)依次多項(xiàng)式的值,即v1=anx+an-1然后由內(nèi)向外逐層計(jì)算一次多項(xiàng)式的值,把n次多項(xiàng)式的求值問題轉(zhuǎn)化成求n個(gè)一次多項(xiàng)式的值的問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖線段AB過x軸正半軸上一定點(diǎn)M(m,0),端點(diǎn)A、B到x軸距離之積為2m,以x軸為對稱軸,過A,O,B三點(diǎn)作拋物線.
(1)求拋物線方程;
(2)若 =﹣1,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(cosx,sinx), =(3,﹣ ),x∈[0,π]
(1)若 ∥ ,求x的值;
(2)記f(x)= ,求f(x)的最大值和最小值以及對應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,求數(shù)列{bn}的前2n項(xiàng)和T2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓O: (a>b>0)過點(diǎn)( ,﹣ ),A(x0 , y0)(x0y0≠0),其上頂點(diǎn)到直線 x+y+3=0的距離為2,過點(diǎn)A的直線l與x,y軸的交點(diǎn)分別為M、N,且 =2 .
(1)證明:|MN|為定值;
(2)如圖所示,若A,C關(guān)于原點(diǎn)對稱,B,D關(guān)于原點(diǎn)對稱,且 =λ ,求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)市場需要,某地準(zhǔn)備建一個(gè)圓形生豬儲備基地(如右圖),它的附近有一條公路,從基地中心O處向東走1 km是儲備基地的邊界上的點(diǎn)A , 接著向東再走7 km到達(dá)公路上的點(diǎn)B;從基地中心O向正北走8 km到達(dá)公路的另一點(diǎn)C.現(xiàn)準(zhǔn)備在儲備基地的邊界上選一點(diǎn)D , 修建一條由D通往公路BC的專用線DE , 求DE的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①“x∈R,x2﹣3x+3=0”的否定是真命題; ②“ ”是“2x2﹣5x﹣3<0”必要不充分條件;
③“若xy=0,則x,y中至少有一個(gè)為0”的否命題是真命題;
④曲線 與曲線 有相同的焦點(diǎn);
⑤過點(diǎn)(1,3)且與拋物線y2=4x相切的直線有且只有一條.
其中是真命題的有:(把你認(rèn)為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當(dāng)a= 時(shí),求不等式f(x)<3的解集;
(Ⅱ)當(dāng)0<x<2時(shí),不等式f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com