已知一個四棱錐P-ABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對角形的正方形)如下,E是側(cè)棱PC上的動點.
(1)求四棱錐P-ABCD的體積;
(2)是否不論點E在何位置都有BD⊥AE,證明你的結(jié)論.
(1)由三視圖可知,PC⊥面ABCD,且PC=2,
底面ABCD是正方形,故體積Vp-ABCD=
1
3
×2×1×1=
2
3
;(6分)
(2)是,在任何位置都有BD⊥AE,理由如下:(8分)
連接AC,則AC⊥BD,PC⊥BD且PC交AC于C點,故BD⊥面PAC,
因為E是PC上的動點,所以AE在平面PAC內(nèi),所以BD⊥AE不論E在何位置都正確.(12分)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在邊長為a的正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是CC1,C1D1,D1D,CD的中點,N是BC的中點,M在四邊形EFGH上及其內(nèi)部運動,若MN平面A1BD,則點M軌跡的長度是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的結(jié)論是______.(把你認為正確的結(jié)論都填上)
①BD平面CB1D1
②AC1⊥平面CB1D1;
③過點A1與異面直線AD和CB1成90°角的直線有2條.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知如圖所示,PA、PO分別是平面α的垂線、斜線,AO是PO在平面α內(nèi)的射影,且直線a?α,a⊥PO.求證:a⊥AO.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,PD⊥平面ABCD,AD⊥CD,AD=CD,DB平分∠ADC,E為PC的中點.求證:
(1)PA平面BDE;
(2)AC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖(1)在正方形SG1G2G3中,E、F分別是邊G1G2、G2G3的中點,沿SE、SF及EF把這個正方形折成一個幾何體如圖(2),使G1,G2,G3三點重合于G,下面結(jié)論成立的是(  )
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為C1D1、A1D1的中點.
(Ⅰ)求證:DE⊥平面BCE;
(Ⅱ)求證:AF平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

△ABC所在平面外一點P,分別連接PA、PB、PC,則這四個三角形中直角三角形最多有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S?ABCD中,底面ABCD是正方形,SA⊥面ABCD,且SA=AB,M、N分別為SB、SD中點,求證:
(1)DB平面AMN.
(2)SC⊥平面AMN.

查看答案和解析>>

同步練習冊答案