【題目】已知△ABC,AB=AC=4,BC=2,點D為AB延長線上一點,BD=2,連結CD,則△BDC的面積是 , com∠BDC=

【答案】;
【解析】解:如圖,取BC得中點E,
∵AB=AC=4,BC=2,
∴BE= BC=1,AE⊥BC,
∴AE= = ,
∴S△ABC= BCAE= ×2× = ,
∵BD=2,
∴S△BDC= S△ABC= ,
∵BC=BD=2,
∴∠BDC=∠BCD,
∴∠ABE=2∠BDC
在Rt△ABE中,
∵cos∠ABE= = ,
∴cos∠ABE=2cos2∠BDC﹣1=
∴cos∠BDC= ,
所以答案是: ,

【考點精析】通過靈活運用二倍角的余弦公式,掌握二倍角的余弦公式:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,側面底面.

(1)求證:平面平面;

(2)若,且二面角等于,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數(shù)學的興趣,他們推出了“解數(shù)學題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20 , 接下來的兩項是20 , 21 , 再接下來的三項是20 , 21 , 22 , 依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是( 。
A.440
B.330
C.220
D.110

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設{an}和{bn}是兩個等差數(shù)列,記cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù).(13分)
(1)若an=n,bn=2n﹣1,求c1 , c2 , c3的值,并證明{cn}是等差數(shù)列;
(2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當n≥m時, >M;或者存在正整數(shù)m,使得cm , cm+1 , cm+2 , …是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,角α與角β均以Ox為始邊,它們的終邊關于y軸對稱,若sinα= ,則cos(α﹣β)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知袋子中放有大小和形狀相同的小球若干,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.若從袋子中隨機抽取1個小球,取到標號為2的小球的概率是

1)求n的值;

2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b

為事件A,求事件A的概率;

在區(qū)間內任取2個實數(shù),求事件恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P-ABCD的底面為等腰梯形, AB∥CD,AC⊥BD,垂足為H, PH是四棱錐的高,E為AD中點,設

1)證明:PE⊥BC;

2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知當x∈[0,1]時,函數(shù)y=(mx﹣1)2 的圖象與y= +m的圖象有且只有一個交點,則正實數(shù)m的取值范圍是( 。
A.(0,1]∪[2 ,+∞)
B.(0,1]∪[3,+∞)
C.(0, )∪[2 ,+∞)
D.(0, ]∪[3,+∞)

查看答案和解析>>

同步練習冊答案