精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在三棱錐PABCDE,F分別為PC,AC,AB的中點已知PAAC,PA6BC8,DF5.

求證(1)直線PA∥平面DEF;

(2)平面BDE⊥平面ABC.

【答案】詳見解析

【解析】試題分析:(1)由D、EPC、AC的中點,得出DE∥PA,從而得出PA∥平面DEF;(2)要證平面BDE⊥平面ABC,只需證DE⊥平面ABC,即證DE⊥EF,且DE⊥AC即可.

試題解析:

(1)D,E分別為棱PCAC的中點,DEPA.

又∵PA平面DEFDE平面DEF,

∴直線PA∥平面DEF.

(2)D、EF分別為PC、AC、AB的中點,PA6,BC8,

DEPA,DEPA3,EFBC4.

又∵DF5,DF2DE2EF2

∴∠DEF90°,DEEF.

PAAC,DEPADEAC.

ACEFE,AC平面ABC,EF平面ABCDE⊥平面ABC.

DE平面BDE,平面BDE平面ABC.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=2sinxcos(x-).

(Ⅰ)求函數f(x)的最小正周期.

(Ⅱ)當x∈[0, ]時,求函數f(x)的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為,且上焦點為,過的動直線與橢圓相交于兩點.設點,記、的斜率分別為

1)求橢圓的方程;

2)如果直線的斜率等于,求的值;

3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓, 是圓上任意一點,線段的垂直平分線和半徑相交于點

(Ⅰ)當點在圓上運動時,求點的軌跡方程;

(Ⅱ)直線與點的軌跡交于不同兩點,且(其中 O 為坐標

原點),求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

① “若,則有實根”的逆否命題為真命題;

②命題“”為真命題的一個充分不必要條件是;

③命題“,使得”的否定是真命題;

④命題函數為偶函數,命題函數上為增函數,

為真命題.

其中,正確的命題是( )

A. ①② B. ①③ C. ②③ D. ③④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖三棱柱ABCA1B1C1的底面是邊長為4的正三角形,AA1⊥平面ABC,AA12MA1B1的中點

(1)求證MCAB;

(2)在棱CC1上是否存在點P,使得MC⊥平面ABP若存在,確定點P的位置;若不存在說明理由

(3)若點PCC1的中點,求二面角BAPC的余弦值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=lnx-x+a+1.

(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;

(2)求證:在(1)的條件下,當x>1時, x2+ax-a>xlnx+成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱臺ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為常數,對任意,均有恒成立.下列說法:

的周期為;

②若為常數)的圖像關于直線對稱,則;

③若,則必有;

④已知定義在上的函數對任意均有成立,且當時, ;又函數為常數),若存在使得成立,則的取值范圍是.其中說法正確的是____.(填寫所有正確結論的編號)

查看答案和解析>>

同步練習冊答案