【題目】如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60,且平面ABCD⊥平面ADEF,AF=FE=AB==2,點G為AC的中點.
(1)求證:EG//平面ABF;
(2)求三棱錐B-AEG的體積.
【答案】(Ⅰ)詳見解析;(Ⅱ).
【解析】
試題分析:(1)取AB中點M,連FM,GM,證明EG∥FM.然后證明EG∥平面ABF;(2)作EN⊥AD,垂足為N,說明EN為三棱錐E-ABG的高.利用等體積法,通過求解即可
試題解析:(1)證明:取AB中點M,連FM,GM.
∵G為對角線AC的中點,
∴GM∥AD,且GM=AD,
又∵FE∥AD,
∴GM∥FE且GM=FE.
∴四邊形GMFE為平行四邊形,即EG∥FM.
又∵平面ABF,平面ABF,
∴EG∥平面ABF.
(2)解:作EN⊥AD,垂足為N,
由平面ABCD⊥平面AFED ,面ABCD∩面AFED=AD,
得EN⊥平面ABCD,即EN為三棱錐E-ABG的高.
∵ 在△AEF中,AF=FE,∠AFE=60,
∴△AEF是正三角形.
∴∠AEF=60,
由EF//AD知∠EAD=60,
∴EN=AEsin60=.
∴ 三棱錐B-AEG的體積為
.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加一項射擊比賽游戲,其中任何一人每射擊一次擊中目標得2分,未擊中目標得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設甲、乙兩人射擊互不影響,則P值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解今年某校高三畢業(yè)班準備報考飛行員學生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考飛行員的總人數(shù);
(Ⅱ)以這所學校的樣本數(shù)據(jù)來估計全省的總體數(shù)據(jù),若從全省報考飛行員的同學中(人數(shù)很多)任選三人,設X表示體重超過60公斤的學生人數(shù),求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A、B、C所對的邊為a、b、c,且 asinC﹣c(2+cosA)=0.
(1)求角A的大;
(2)若△ABC的最大邊長為 ,且sinC=2sinB,求最小邊長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設為P為AC的中點,Q為AB上一點,使PQ⊥OA,并計算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(ω>0)的最小正周期為π.
(Ⅰ)求ω的值和f(x)的單調遞增區(qū)間;
(Ⅱ)若關于x的方程f(x)﹣m=0在區(qū)間[0,]上有兩個實數(shù)解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設每一架飛機的每一個引擎在飛行中出現(xiàn)故障概率均為,且各引擎是否有故障是獨立的,已知4引擎飛機中至少有3個引擎飛機正常運行,飛機就可成功飛行;2引擎飛機要2個引擎全部正常運行,飛機才可成功飛行.要使4引擎飛機比2引擎飛機更安全,則的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,且滿足sin2B+sin2C=sin2A+2sinBsinCsin(B+C). (Ⅰ)求角A的大。
(Ⅱ)若a=2,求△ABC面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com