【題目】已知拋物線,圓,直線與拋物線相切于點(diǎn),與圓相切于點(diǎn).

(1)若直線的斜率,求直線和拋物線的方程;

(2)設(shè)為拋物線的焦點(diǎn),設(shè),的面積分別為,,若,求的取值范圍.

【答案】(1),;(2).

【解析】試題分析:(1)第一問(wèn),一般先設(shè)出直線的方程,再根據(jù)直線和圓相切得到b的值. 再利用直線和拋物線方程組的判別式等于零,得到P的值. (2)第(2)問(wèn),一般利用函數(shù)的思想求的取值范圍.先要分別計(jì)算出,,從而得到函數(shù),再選擇合適的方法求取值范圍.

試題解析:

(1)由題設(shè)知,且,

相切知,的距離,得

.

的方程聯(lián)立消,

,

.

綜上,,.

(2)不妨設(shè),根據(jù)對(duì)稱性,得到的結(jié)論與得到的結(jié)論相同.

此時(shí),又知,設(shè),,

,從而解得

切于點(diǎn)的距離,得,故.

,

.

的距離為 ,

,

.

當(dāng)且僅當(dāng)時(shí)取等號(hào),

與上同理可得,時(shí)亦是同上結(jié)論.

綜上,的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱,為棱的中點(diǎn),.

(1)證明:平面

(2)設(shè)二面角的正切值為,,為線段上一點(diǎn),且與平面所成角的正弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長(zhǎng)棱的長(zhǎng)度為( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,,,,,,,點(diǎn)中點(diǎn).

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】基因編輯嬰兒“露露”和“娜娜”出生的消息成了全球矚目的焦點(diǎn),為了解學(xué)生對(duì)基因編輯嬰兒的看法,某中學(xué)隨機(jī)從該校一年級(jí)學(xué)生中抽取了100人進(jìn)行調(diào)查,抽取的45女生中贊成基因編輯嬰兒的占,而55名男生中有10人表示贊成基因編輯嬰兒.

(1)完成列聯(lián)表,并回答能否有90%的把握認(rèn)為“對(duì)基因編輯嬰兒是否贊成與性別有關(guān)”?

(2)現(xiàn)從該校不贊成基因編輯嬰兒的學(xué)生中,采用分層抽樣的方法抽取7名學(xué)生,再?gòu)谋怀槿〉?名學(xué)生中任取3人,記被抽取的3名學(xué)生女生的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)若,試討論函數(shù)的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查學(xué)生數(shù)學(xué)學(xué)習(xí)的質(zhì)量情況,某校從高二年級(jí)學(xué)生(其中男生與女生的人數(shù)之比為)中,采用分層抽樣的方法抽取名學(xué)生依期中考試的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì).根據(jù)數(shù)學(xué)的分?jǐn)?shù)取得了這名同學(xué)的數(shù)據(jù),按照以下區(qū)間分為八組:

,②,③,④,⑤,⑥,⑦,⑧

得到頻率分布直方圖如圖所示.已知抽取的學(xué)生中數(shù)學(xué)成績(jī)少于分的人數(shù)為人.

(1)求的值及頻率分布直方圖中第④組矩形條的高度;

(2)如果把“學(xué)生數(shù)學(xué)成績(jī)不低于分”作為是否達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的名學(xué)生,完成下列列聯(lián)表:

據(jù)此資料,你是否認(rèn)為“學(xué)生性別”與“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”有關(guān)?

(3)若從該校的高二年級(jí)學(xué)生中隨機(jī)抽取人,記這人中成績(jī)不低于分的學(xué)生人數(shù)為,求的分布列、數(shù)學(xué)期望和方差

附1:“列聯(lián)表”的卡方統(tǒng)計(jì)量公式:

附2:卡方()統(tǒng)計(jì)量的概率分布表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PAD⊥底面 ABCD,側(cè)棱PA=PD,底面ABCD為直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,OAD中點(diǎn).

)求證:PO⊥平面ABCD

)線段AD上是否存在點(diǎn),使得它到平面PCD的距離為?若存在,求出值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

(2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬(wàn)元)

1

2

3

4

5

銷售收益 (單位:萬(wàn)元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案