【題目】若函數(shù)y=ksin(kx+φ)( )與函數(shù)y=kx﹣k2+6的部分圖象如圖所示,則函數(shù)f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對稱軸的方程可以為( )
A.
B.
C.
D.
【答案】B
【解析】解:若函數(shù)y=ksin(kx+φ)( )與函數(shù)y=kx﹣k2+6的部分圖象如圖所示,
根據(jù)函數(shù)y=ksin(kπ+φ)(k>0,|φ|< )的最大值為k,∴﹣k2+6=k,∴k=2.
把點( ,0)代入y=2sin(2x+φ)可得 sin( +φ)=0,∴φ=﹣ ,∴入y=2sin(2x﹣ ).
則函數(shù)f(x)=sin(kx﹣φ)+cos(kx﹣φ)=2sin(2x+ )+2cos(2x+ )= sin(2x+ + )= sin(2x+ ).
令2x+ =kπ+ ,求得x= + ,k∈Z,故f(x)的圖象的對稱軸的方程為得x= + ,k∈Z
當k=1時,可得函數(shù)f(x)=sin(kx﹣φ)+cos(kx﹣φ)圖象的一條對稱軸的方程可以為 ,
故選:B.
由函數(shù)的最大值求出A,由特殊點的坐標求出φ的值,可得函數(shù)的解析式,再利用三角恒等變換化簡f(x)的解析式,再利用正弦函數(shù)的圖象的對稱性求得f(x)的圖象的一條對稱軸的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( x3﹣x2+ )cos2017( + )+2x+3在[﹣2015,2017]上的最大值為M,最小值為m,則M+m=( )
A.5
B.10
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知實數(shù)x,y滿足 ,若目標函數(shù)z=﹣mx+y的最大值為﹣2m+10,最小值為﹣2m﹣2,則實數(shù)m的取值范圍是( )
A.[﹣1,2]
B.[﹣2,1]
C.[2,3]
D.[﹣1,3]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)lnx﹣ax+1.
(1)若f(x)在區(qū)間(1,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若存在唯一整數(shù)x0 , 使得f(x0)<0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標中,圓C的方程為ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐標方程;
(Ⅱ)當φ∈(0,π)時,l與C相交于P,Q兩點,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,AD∥BC,AD=AB=DC= BC=1,E是PC的中點,面PAC⊥面ABCD.
(Ⅰ)證明:ED∥面PAB;
(Ⅱ)若PC=2,PA= ,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)上點P,其左、右焦點分別為F1 , F2 , △PF1F2的面積的最大值為 ,且滿足 =3
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓上互不重合的四個點,AC與BD相交于F1 , 且 =0,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com