已知橢圓的左、右焦點分別為、,橢圓上的點滿足,且的面積.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線,使與橢圓交于不同的兩點、,且線段恰被直線平分?若存在,求出的斜率取值范圍;若不存在,請說明理由.
(I)橢圓的方程為.(Ⅱ)存在滿足題設(shè)條件的直線,且的斜率取值范圍是
.
【解析】
試題分析:(Ⅰ)由題意知:.,且,由此可求得,,二者相加即得,從而得橢圓的方程. (Ⅱ)假設(shè)這樣的直線存在,且直線的方程為,設(shè)與橢圓的兩交點為、,若線段恰被直線平分,則.這顯然用韋達(dá)定理.由 得.
由得.再用韋達(dá)定理得 ,代入得,再將此式代入得一只含的不等式,解此不等式即得的取值范圍.
試題解析:(Ⅰ)由題意知:, (1分)
橢圓上的點滿足,且,
.
,.
. (2分)
又. (3分)
橢圓的方程為. (4分)
(Ⅱ)假設(shè)這樣的直線存在.與直線相交,直線的斜率存在.
設(shè)的方程為, (5分)
由 得.(*) (6分)
直線與橢圓有兩個交點,
(*)的判別式,即.① (7分)
設(shè)、,則 . (8分)
被直線平分,可知,
,. ② (9分)
把②代入①,得,即. (10分)
,. (11分)
或.即存在滿足題設(shè)條件的直線,且的斜率取值范圍是
. (12分)
考點:直線與圓錐曲線.
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的左、右焦點分別為,其右準(zhǔn)線上上存在點(點在 軸上方),使為等腰三角形.
⑴求離心率的范圍;
⑵若橢圓上的點到兩焦點的距離之和為,求的內(nèi)切圓的方程.查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期假期檢測考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
已知橢圓的左、右焦點分別為,, 點是橢圓的一個頂點,△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點分別作直線,交橢圓于,兩點,設(shè)兩直線的斜率分別為,,且,證明:直線過定點().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省三明市高三上學(xué)期三校聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本題滿分14分) 已知橢圓的左、右焦點分別為F1、F2,其中
F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且
(I)求橢圓C1的方程; (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省德宏州高三高考復(fù)習(xí)數(shù)學(xué)試卷 題型:解答題
(本小題滿分12分)
已知橢圓的左、右焦點分別為、,離心率,右準(zhǔn)線方程為.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com