(2010•新疆模擬)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的短軸一個(gè)頂點(diǎn)與兩個(gè)焦點(diǎn)連線構(gòu)成等邊三角形,則離心率為( 。
分析:根據(jù)正三角形的性質(zhì)可知b=
3
c,進(jìn)而根據(jù)a,b和c的關(guān)系進(jìn)而求得a和c的關(guān)系,則橢圓的離心率可得.
解答:解:依題意可知b=
3
c
∴a=
b2+c2
=2c
∴e=
c
a
=
1
2

則離心率為:
1
2

故選A.
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)橢圓基礎(chǔ)知識(shí)的把握和理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•新疆模擬)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,C=2A,cosA=
3
4

(Ⅰ)求cosC,cosB的值;
(Ⅱ)若
BA
BC
=
27
2
,求邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對(duì)數(shù)的底,a∈R.
(Ⅰ)a=1時(shí),求f(x)的單調(diào)區(qū)間、極值;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說(shuō)明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•新疆模擬)設(shè)集合A={x|x∈Z,-6≤x≤-1},B={x|x∈Z,|x|>5}則A∪(CZB)中元素個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案