【題目】四棱錐中, ,底面是菱形,且, ,過點作直線, 為直線上一動點.

(1)求證:

(2)當二面角的大小為時,求的長;

(3)在(2)的條件下,求三棱錐的體積.

【答案】(1)見解析;(2);(3).

【解析】試題分析:

(1)利用三垂線定理結(jié)合即可證得

(2)首先寫出二面角的平面角,最后利用余弦定理列出方程求解QB的長度即可;

(3)將問題轉(zhuǎn)化為兩個三棱錐的體積,其中公共的底為△POQ,高的總長度為AC的長,則體積公式為:

試題解析:

(1)由題意知直線在面上的射影為,

又菱形,由三垂線定理知.

(2)都是以為底的等腰三角形,設(shè)的交點為,

連接,則是二面角的平面角,

知,二面角大于,

所以點與點在平面的同側(cè),如圖所示.

是二面角的平面角,故.

中, ,設(shè),則中,

在直角梯形中, ,

中,由余弦定理得,故,

解得,即.

(3)由(2)知: , ,

,∴.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

,,的單調(diào)遞減區(qū)間;

若函數(shù)有唯一的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.

1求AD邊所在直線的方程;

2求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四凌錐S﹣ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中點,且SA=AB=BC=2,AD=1.

(1)求證:DM∥平面SAB;
(2)求四棱錐S﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中, , 為邊的中點,將沿直線翻轉(zhuǎn)成.若為線段的中點,則在翻折過程中:

是定值;②點在某個球面上運動;

③存在某個位置,使;④存在某個位置,使平面.

其中正確的命題是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術(shù)節(jié)對同一類的, , 四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品獲獎情況預測如下:

甲說:“作品獲得一等獎”

乙說:“作品獲得一等獎”

丙說:“ 兩項作品未獲得一等獎”

丁說:“作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子原件生產(chǎn)廠生產(chǎn)的10件產(chǎn)品中,有8件一級品,2件二級品,一級品和二級品在外觀上沒有區(qū)別.從這10件產(chǎn)品中任意抽檢2件,計算:
(1)2件都是一級品的概率;
(2)至少有一件二級品的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,an=32,sn=63,
(1)若數(shù)列{an}為公差為11的等差數(shù)列,求a1;
(2)若數(shù)列{an}為以a1=1為首項的等比數(shù)列,求數(shù)列{am2}的前m項和sm

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點上,且

(Ⅰ)已知點上,且,求證:平面平面

(Ⅱ)當二面角的余弦值為多少時,直線與平面所成的角為

查看答案和解析>>

同步練習冊答案