【題目】在平面直角坐標(biāo)系 中,以 為極點, 軸非負(fù)半軸為極軸建立坐標(biāo)系,已知曲線 的極坐標(biāo)方程為 ,直線 的參數(shù)方程為: 為參數(shù)),兩曲線相交于 兩點.
(1)寫出曲線 的直角坐標(biāo)方程和直線 的普通方程;
(2)若 的值.

【答案】
(1)解:(曲線C的直角坐標(biāo)方程為 , 直線l的普通方程
(2)解:直線 的參數(shù)方程為 (t為參數(shù)),
代入y2=4x, 得到 ,設(shè)M,N對應(yīng)的參數(shù)分別為t1,t2

所以|PM|+|PN|=|t1+t2|=
【解析】(Ⅰ)根據(jù)題目中所給的條件的特點,根據(jù)x=ρcosθ、y=ρsinθ,寫出曲線C的直角坐標(biāo)方程;用代入法消去參數(shù)求得直線l的普通方程.
(Ⅱ)把直線l的參數(shù)方程代入y2=4x,得到關(guān)于參數(shù)t的一元二次方程,利用參數(shù)的幾何意義結(jié)合根與系數(shù)之間的關(guān)系,計算即可求得結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角△ABC中,∠BCA=90°,CA=CB=1,P為AB邊上的點且 ,若 ,則λ的取值范圍是(
A.[ ,1]
B.[ ,1]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市初三畢業(yè)生參加中考要進(jìn)行體育測試,某實驗中學(xué)初三(8)班的一次體育測試成績的莖葉圖和頻率分布直方圖都受到不同程度的涂黑,但可見部分如圖,據(jù)此解答如下問題.

(Ⅰ)求全班人數(shù)及中位數(shù),并重新畫出頻率直方圖;
(Ⅱ)若要從分?jǐn)?shù)在 之間的成績中任取兩個學(xué)生成績分析學(xué)生得分情況,在抽取的學(xué)生中,求至少有一個分?jǐn)?shù)在 之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若曲線 處的切線經(jīng)過坐標(biāo)原點,求 及該切線的方程;
(2)設(shè) ,若函數(shù) 的值域為 ,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題,其中所有真命題的序號為
①函數(shù) 在區(qū)間 上存在一個零點,則 的取值范圍是
②“ ”是“ 成等比數(shù)列”的必要不充分條件;
,
④若 ,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為常數(shù))與 軸有唯一的公關(guān)點
(Ⅰ)求函數(shù) 的單調(diào)區(qū)間;
(Ⅱ)曲線 在點 處的切線斜率為 ,若存在不相等的正實數(shù) ,滿足 ,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠為檢驗車間一生產(chǎn)線是否工作正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量尺寸(單位: )繪成頻率分布直方圖如圖所示:

(Ⅰ)求該批零件樣本尺寸的平均數(shù) 和樣本方差 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅱ)若該批零件尺寸 服從正態(tài)分布 ,其中 近似為樣本平均數(shù) , 近似為樣本方差 ,利用該正態(tài)分布求 ;
(Ⅲ)若從生產(chǎn)線中任取一零件,測量尺寸為 ,根據(jù) 原則判斷該生產(chǎn)線是否正常?
附: ;若 ,則 , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時,
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

同步練習(xí)冊答案