6.已知定義在(0,+∞)上的函數(shù)f(x)為增函數(shù),且滿足 f(2)=1,f(xy)=f(x)+f(y);
(1)求f(1)、f(4)的值;
(2)解關(guān)于x的不等式f(x)<2+f(x-3).

分析 (1)賦值法直接求f(1)\f(4);
(2)f(x)<2+f(x-3)=f(4)+f(x-3)=f(4x-12)⇒$\left\{\begin{array}{l}x<4x-12\\ x>0\\ x-3>0\end{array}\right.⇒x>4$.

解答 (1)解:$\begin{array}{l}f(2)=f(1×2)=f(1)+f(2)$,∴$f(1)=0----(2分)\\ f(4)=f(2)+f(2)=2----(2分)\end{array}$
     f(2×2)=f(2)+f(2)=4;
(2)f(x)<2+f(x-3)=f(4)+f(x-3)=f(4x-12)
而函數(shù)f(x)是定義在(0,+∞)上為增函數(shù);
所以$\left\{\begin{array}{l}x<4x-12\\ x>0\\ x-3>0\end{array}\right.⇒x>4$
不等式解集為 {x|x>4}.

點評 本題考查了抽象函數(shù)的賦值法、單調(diào)性及函數(shù)不等式,要注意定義域,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知點P為圓x2+y2=25上任意一點,過P作x軸的垂線,垂足為H,且滿足$\overrightarrow{MH}$=$\frac{3}{5}\overrightarrow{PH}$,若M的軌跡為曲線E.
(1)求h(x)=f(x)-g(x)的方程;
(2)設(shè)過曲線E左焦點的兩條弦為MN、PQ,弦MN,PQ所在直線的斜率分別為k1、k2,當(dāng)k1k2=1時,判斷$\frac{1}{|MN|}$+$\frac{1}{|PQ|}$是否為定值,若是,求出該定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)集合M={(x,y)|3x-4y=$\frac{1}{27}$,x,y∈R},N={(x,y)|log${\;}_{\sqrt{3}}}$(x-y)=2,x,y∈R},則M∩N={(5,2)}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合{0,1}的真子集有( 。
A.2個B.3個C.4個D.8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC=b+c.
(1)求A;
(2)若a=2,△ABC的面積為$\sqrt{3}$,判斷此三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=-2x2+1,則f(-1)=( 。
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若直線y=2x+b與橢圓$\frac{{x}^{2}}{4}$+y2=1無公共點,則b的取值范圍為b$<-2\sqrt{2}$或b$>2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.定義:若函數(shù)f(x)對于其定義域內(nèi)的某一數(shù)x0,有f(x0)=x0,則稱x0是f(x)的一個不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=3時,求函數(shù)f(x)的不動點;
(2)若對任意的實數(shù)b,函數(shù)f(x)恒有兩個不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上兩個點A、B的橫坐標(biāo)是函數(shù)f(x)的不動點,且A、B的中點C在函數(shù)g(x)=-x+$\frac{2a}{5{a}^{2}-4a+1}$的圖象上,求b的最小值.(參考公式:A(x1,y1),B(x2,y2)的中點坐標(biāo)為($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2+ex(x<0)與g(x)=x2+ln(x+a)的圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( 。
A.$(-∞,\sqrt{e})$B.(-e,e)C.$(-\frac{1}{e},\sqrt{e})$D.(-∞,e)

查看答案和解析>>

同步練習(xí)冊答案