已知拋物線C的方程為x2=4y,直線y=2與拋物線C相交于M,N兩點(diǎn),點(diǎn)A,B在拋物線C上.
(Ⅰ)若∠BMN=∠AMN,求證:直線AB的斜率為
2
;
(Ⅱ)若直線AB的斜率為
2
,求證點(diǎn)N到直線MA,MB的距離相等.
(Ⅰ)設(shè)A(x1,y1),B(x2,y2),直線AM的斜率為k,∵∠BMN=∠AMN,所以直線BM的斜率為-k,
可求得M(-2
2
,2),N(2
2
,2)
,則直線AM的方程為y=k(x+2
2
)-2
,
代入x2=4y得x2-4kx-8
2
k-8=0,∵xAx1=-8
2
k-8∴x1=4k+2
2
,
同理x2=-4k+2
2
,kAB=
y1-y2
x1-x2
=
x21
4
-
x22
4
x1-x2
=
x1+x2
4
=
2
.(5分)
(Ⅱ)若直線AB的斜率為
2
,由(1)可得:x1=4kAM+2
2
,x2=4kBM+2
2
,
∴kAB=
y1-y2
x1-x2
=
x21
4
-
x22
4
x1-x2
=
x1+x2
4
=
4(kAM+kBM)+4
2
4
=
2
,
∴kAM+kBM=0,
∴∠BMN=∠AMN,
故點(diǎn)N到直線MA,MB的距離相等.(10分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,拋物線C上的點(diǎn)M(2,m)到焦點(diǎn)F的距離為3.
(Ⅰ)求拋物線C的方程:
(Ⅱ)過(guò)點(diǎn)(2,0)的直線l與拋物線C交于A、B兩點(diǎn),若|AB|=4
6
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)P(x0,y0)是橢圓C:
x2
5
+y2=1
上的一點(diǎn).F1、F2是橢圓C的左右焦點(diǎn).
(1)若∠F1PF2是鈍角,求點(diǎn)P橫坐標(biāo)x0的取值范圍;
(2)求代數(shù)式
y20
+2x0
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知△ABC中,B(-2,0),C(2,0),△ABC的周長(zhǎng)為12,動(dòng)點(diǎn)A的軌跡為曲線E.
(1)求曲線E的方程;
(2)設(shè)P、Q為E上兩點(diǎn),
OP
OQ
=0
,過(guò)原點(diǎn)O作直線PQ的垂線,垂足為M,證明|OM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,DA⊥AB,AD=3,AB=4,BC=
3
,點(diǎn)E在線段AB的延長(zhǎng)線上.若曲線段DE(含兩端點(diǎn))為某曲線L上的一部分,且曲線L上任一點(diǎn)到A、B兩點(diǎn)的距離之和都相等.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系,求曲線L的方程;
(2)根據(jù)曲線L的方程寫(xiě)出曲線段DE(含兩端點(diǎn))的方程;
(3)若點(diǎn)M為曲線段DE(含兩端點(diǎn))上的任一點(diǎn),試求|MC|+|MA|的最小值,并求出取得最小值時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A、B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線
x2
m
-
y2
n
=1
(mn≠0)的離心率為2,有一個(gè)焦點(diǎn)恰好是拋物線y2=4x的焦點(diǎn),則此雙曲線的漸近線方程是( 。
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E:
x2
4
+y2=1的左、右頂點(diǎn)分別為A、B,圓x2+y2=4上有一動(dòng)點(diǎn)P,P在x軸上方,C(1,0),直線PA交橢圓E于點(diǎn)D,連結(jié)DC,PB.
(Ⅰ)若∠ADC=90°,求△ADC的面積S;
(Ⅱ)設(shè)直線PB,DC的斜率存在且分別為k1,k2,若k1=2k2,求λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案