【題目】(本小題滿(mǎn)分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

【答案】y=225x+

)當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元。

【解析】

試題(1)設(shè)矩形的另一邊長(zhǎng)為am,則根據(jù)圍建的矩形場(chǎng)地的面積為360m2,易得,此時(shí)再根據(jù)舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,我們即可得到修建圍墻的總費(fèi)用y表示成x的函數(shù)的解析式;(2)根據(jù)(1)中所得函數(shù)的解析式,利用基本不等式,我們易求出修建此矩形場(chǎng)地圍墻的總費(fèi)用最小值,及相應(yīng)的x

試題解析:(1)如圖,設(shè)矩形的另一邊長(zhǎng)為a m

45x+180x-2+180·2a=225x+360a-360

由已知xa=360,a=,

所以y=225x+

2

.當(dāng)且僅當(dāng)225x=時(shí),等號(hào)成立.

即當(dāng)x=24m時(shí),修建圍墻的總費(fèi)用最小,最小總費(fèi)用是10440元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校自主招生一次面試成績(jī)的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見(jiàn)部分信息如下,據(jù)此解答下列問(wèn)題:

1)求參加此次高校自主招生面試的總?cè)藬?shù),面試成績(jī)的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);

2)若從面試成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查,求恰好有一人分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是實(shí)數(shù),函數(shù)

(1)求證:函數(shù)不是奇函數(shù);

(2)當(dāng)時(shí),解關(guān)于的不等式;

(3)求函數(shù)的值域(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中

(1)BMED平行 (2)CNBE是異面直線(xiàn)

(3)CNBM60° (4)DM與BN垂直

以上四個(gè)命題中,正確命題的序號(hào)是(

A. (1)(2)(3) B. (2)(4) C. (3)(4) D. (2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是棱長(zhǎng)為2的正方形,側(cè)面PAD為正三角形,且面PAD⊥面ABCD,E、F分別為棱AB、PC的中點(diǎn).

(1)求證:EF∥平面PAD

(2)求三棱錐B-EFC的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓點(diǎn)在橢圓,橢圓的四個(gè)頂點(diǎn)的連線(xiàn)構(gòu)成的四邊形的面積為

1)求橢圓的方程

2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn), 為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線(xiàn)斜率分別為、,,請(qǐng)判斷直線(xiàn)是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,離心率為,橢圓與軸與左點(diǎn)與點(diǎn)的距離為

(1)求橢圓方程;

(2)過(guò)點(diǎn)的直線(xiàn)與橢圓交于不同的兩點(diǎn),當(dāng)面積為時(shí),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的左、右焦點(diǎn)分別為 , ,其離心率為 ,短軸端點(diǎn)與焦點(diǎn)構(gòu)成四邊形的面積為 .

(1)求橢圓 的方程;

(2)若過(guò)點(diǎn) 的直線(xiàn) 與橢圓 交于不同的兩點(diǎn) 、 為坐標(biāo)原點(diǎn),當(dāng) 時(shí),試求直線(xiàn) 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若函數(shù)恰有兩個(gè)不相同的零點(diǎn),求實(shí)數(shù)的值;

(2)記為函數(shù)的所有零點(diǎn)之和,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案