【題目】已知點(diǎn)在同一個球的球面上,,.若四面體體積的最大值為,則這個球的表面積為_____.

【答案】

【解析】

根據(jù)幾何體的特征,小圓的圓心為Q,若四面體ABCD的體積的最大值,由于底面積SABC不變,高最大時體積最大,可得DQ與面ABC垂直時體積最大,從而求出球的半徑,即可求出球的表面積.

根據(jù)題意知,AB、C三點(diǎn)均在球心O的表面上,

,,由余弦定理可得BC,∴△ABC為直角三角形,

∴△ABC外接圓直徑2r=AC=6,即r=3,

SABC×3,

AC的中點(diǎn)即為小圓的圓心設(shè)為Q,若四面體ABCD的體積的最大值,由于底面積SABC不變,高最大時體積最大,

所以,DQ與面ABC垂直時體積最大,最大值為SABC×DQ,

DQ=3,

設(shè)球的半徑為R,則

在直角△AQO中,OA2AQ2+OQ2,即R2=32+(3R2,∴R,

∴球的表面積為

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年,在“雜交水稻之父”袁隆平的實(shí)驗(yàn)田內(nèi)種植了,兩個品種的水稻,為了篩選出更優(yōu)的品種,在兩個品種的實(shí)驗(yàn)田中分別抽取7塊實(shí)驗(yàn)田,如圖所示的莖葉圖記錄了這14塊實(shí)驗(yàn)田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個品種的均值及方差,并從中挑選一個品種進(jìn)行以后的推廣,有如下結(jié)論:①品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④品種水稻比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;其中正確結(jié)論的編號為( )

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: 的一個頂點(diǎn)與拋物線: 的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn)的直線l與橢圓C交于M、N兩點(diǎn).

(1)求橢圓C的方程;

(2)是否存在直線l,使得 ,若存在,求出直線l的方程;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是直線,是兩個不同的平面,則以下說法正確的是(

A.,,則B.,,則

C.,則D.,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在意大利,有一座滿是斗笠的灰白小鎮(zhèn)阿爾貝羅貝洛(Alberobello,這些圓錐形屋頂?shù)钠嫣匦∥菝?/span>Trullo,于1996年被收入世界文化遺產(chǎn)名錄(如圖1.現(xiàn)測量一個屋頂,得到圓錐SO的底面直徑AB長為12m,母線SA長為18m如圖2.C,D是母線SA的兩個三等分點(diǎn)(點(diǎn)D近點(diǎn)AE是母線SB的中點(diǎn).

1)從點(diǎn)A到點(diǎn)C繞屋頂側(cè)面一周安裝燈光帶,求燈光帶的最小長度;

2)現(xiàn)對屋頂進(jìn)行加固,在底面直徑AB上某一點(diǎn)P,向點(diǎn)D和點(diǎn)E分別引直線型鋼管PDPE.試確定點(diǎn)P的位置,使得鋼管總長度最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5個人按原來站的位置重新站成一排,恰有一人站在自己原來的位置上的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年4月23日“世界讀書日”來臨之際,某校為了了解中學(xué)生課外閱讀情況,隨機(jī)抽取了100名學(xué)生,并獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),按閱讀時間分組:第一組[0,5), 第二組[5,10),第三組[10,15),第四組[15,20),第五組[20,25],繪制了頻率分布直方圖如下圖所示。已知第三組的頻數(shù)是第五組頻數(shù)的3倍。

(1)求的值,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生一周課外閱讀時間的平均值;

(2)現(xiàn)從第三、四、五這3組中用分層抽樣的方法抽取6人參加!爸腥A詩詞比賽”。經(jīng)過比賽后,從這6人中隨機(jī)挑選2人組成該校代表隊(duì),求這2人來自不同組別的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個八面體的各條棱長均為,四邊形為正方形,給出下列命題:

①不平行的兩條棱所在的直線所成的角是; ②四邊形是正方形;

③點(diǎn)到平面的距離為; ④平面與平面所成的銳二面角的余弦值為

其中正確的命題全部序號為_________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】詹姆斯·哈登(James Harden)是美國NBA當(dāng)紅球星,自2012年10月加盟休斯頓火箭隊(duì)以來,逐漸成長為球隊(duì)的領(lǐng)袖.2017-18賽季哈登當(dāng)選常規(guī)賽MVP(最有價(jià)值球員).

年份

2012-13

2013-14

2014-15

2015-16

2016-17

2017-18

年份代碼t

1

2

3

4

5

6

常規(guī)賽場均得分y

25.9

25.4

27.4

29.0

29.1

30.4

(Ⅰ)根據(jù)表中數(shù)據(jù),求y關(guān)于t的線性回歸方程*);

(Ⅱ)根據(jù)線性回歸方程預(yù)測哈登在2019-20賽季常規(guī)賽場均得分.

(附)對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,

(參考數(shù)據(jù),計(jì)算結(jié)果保留小數(shù)點(diǎn)后一位)

查看答案和解析>>

同步練習(xí)冊答案