已知二項式(
x
-
2
3x
n展開式的第五項的系數(shù)與第三項的系數(shù)的比為30:1.
(1)展開式的所有有理項;
(2)n+6Cn2+36Cn3+…+6n-1Cnn;
(3)系數(shù)的絕對值最大的項(結(jié)果可以有組合數(shù)、冪)
考點:二項式系數(shù)的性質(zhì)
專題:計算題,二項式定理
分析:(1)求出二項式的通項公式,并化簡,由條件,列方程求得n=12,再化簡通項,考慮x的指數(shù)為整數(shù)的情況,即可得到有理項;
(2)逆用二項式定理,注意添上首項1,即可得到所求值;
(3)根據(jù)最大的系數(shù)絕對值大于等于其前一個系數(shù)絕對值;同時大于等于其后一個系數(shù)絕對值;列出不等式求出系數(shù)絕對值最大的項.
解答: 解:(1)二項式(
x
-
2
3x
n展開式的通項公式為Tr+1=
C
r
n
(
x
)n-r(
-2
3x
)r
(r=0,1,…,n)
=
C
r
n
(-2)rx
3n-5r
6
,
由于展開式的第五項的系數(shù)與第三項的系數(shù)的比為30:1,則
C
4
n
24
C
2
n
22
=30:1,
化簡得,n2-5n=84=0,解得,n=12(-7舍去).
則展開式的通項公式為Tr+1=
C
r
12
(-2)rx
36-5r
6
(r=0,1,2,…,12),
當r=0,6,12時為有理項,
即為T1=x6,T7=
C
6
12
26•x
=59136x,T13=
C
12
12
212x-4
=4096x-4;
(2)n+6Cn2+36Cn3+…+6n-1Cnn=
C
1
12
+6C122+36C123+…+612-1C1212
=
1
6
(1+6
C
1
12
+62C122+63C123+…+612C1212)-
1
6
=
1
6
•(1+6)12-
1
6
=
712-1
6
;
(3)設(shè)第r+1項的系數(shù)的絕對值最大,
因為Tr+1=
C
r
12
(-2)rx
36-5r
6
(r=0,1,2,…,12),
C
r
12
2r
≥C
r-1
12
2r-1
C
r
12
2r
≥C
r+1
12
2r+1
2C
r
12
≥C
r-1
12
C
r
12
2C
r+1
12

即有
26-2r≥r
24-2r≤1+r
23
3
≤r≤
26
3
,則r=8,
則系數(shù)的絕對值最大的項為T9=
C
8
12
28x-
2
3
點評:本題考查二項式定理及運用,考查二項式的通項公式和運用,考查有理項和系數(shù)的絕對值最大的項的求法,考查運算年林,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)是周期為3的偶函數(shù),當x∈[0,
3
2
]時,f(x)=sin(πx),則函數(shù)f(x)在區(qū)間[0,5]上的零點個數(shù)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高三學(xué)生李麗在一年的五次數(shù)學(xué)模擬考試中的成績?yōu)閤,y,105,109,110.已知該同學(xué)五次數(shù)學(xué)成績的平均分為108,方差為35.2,則|x-y|的值為(  )
A、15B、16C、17D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2-x+c(x∈R),則下列結(jié)論錯誤的是( 。
A、函數(shù)f(x)一定存在極大值和極小值
B、若f(x)在(-∞,x1)、(x2,+∞)上是增函數(shù),則x2-x1
2
3
3
C、函數(shù)f(x)在點(x0,f(x0))處的切線與f(x)的圖象必有兩個不同公共點
D、函數(shù)f(x)的圖象是中心對稱圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=sin
x+Φ
3
,Φ∈[0,2π]是偶函數(shù),則Φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求正弦曲線y=sinx上切線斜率等于
1
2
的點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直四棱柱ABCD-A1B1C1D1,側(cè)棱AA1=1且垂直于底面,光線沿AA1方向投影得到的主視圖是直角梯形,E、F分別是棱BC、B1C1上的動點,且EF∥CC1
(1)證明:無論點E運動到BC的哪個位置,四邊形EFD1D都為矩形;
(2)當EC=1時,求幾何體A-EFD1D的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x-2xt+t+1在區(qū)間(0,+∞)上的圖象恒在x軸上方,則實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在[-2,2]上的單調(diào)減函數(shù),且f(a+1)<f(2a),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案