【題目】如圖,已知OPQ是半徑為 圓心角為 的扇形,C是該扇形弧上的動(dòng)點(diǎn),ABCD是扇形的內(nèi)接矩形,記∠BOC為α.
(Ⅰ)若Rt△CBO的周長為 ,求 的值.
(Ⅱ)求 的最大值,并求此時(shí)α的值.
【答案】解:(Ⅰ)BC=OCsinα= sinα,OB=OCcosα= cosα,
則若Rt△CBO的周長為 ,
則 + sinα+ cosα= ,
sinα+cosα= ,
平方得2sinαcosα= ,
即 = = ,
解得tanα=3(舍)或tanα= .
則 = = = = .
(Ⅱ)在Rt△OBC中,BC=OCsinα= sinα,OB=OCcosα= cosα,
在Rt△ODA中,
OA=DAtan = BC= sinα,
∴AB=OB﹣OA= (cosα﹣ cosα),
則 =| | |= (cosα﹣ cosα) sinα
=
∵ ,
∴ ,
∴當(dāng) ,
即 時(shí), 有最大值 .
【解析】(Ⅰ)由條件利用直角三角形中的邊角關(guān)系求出三角形的周長,利用三角函數(shù)的倍角公式進(jìn)行化簡進(jìn)行求解.(Ⅱ)結(jié)合向量的數(shù)量積公式,結(jié)合三角函數(shù)的帶動(dòng)下進(jìn)行求解.
【考點(diǎn)精析】本題主要考查了扇形面積公式的相關(guān)知識(shí)點(diǎn),需要掌握若扇形的圓心角為,半徑為,弧長為,周長為,面積為,則,,才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=1,在矩形ABCD的邊CD上隨機(jī)取一點(diǎn)E,記“△AEB的最大邊是AB”為事件M,則P(M)等于( )
A.2﹣
B. ﹣1
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn)的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F (2,0)為其右焦點(diǎn).
(1)求橢圓C的方程和離心率e;
(2)若平行于OA的直線l與橢圓有公共點(diǎn),求直線l在y軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)兩個(gè)非零向量 與 不共線.
(1)若 = + , =2 +8 , =3( ﹣ ).求證:A,B,D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k,使k + 和 +k 共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 +y2=1(m>1)和雙曲線 ﹣y2=1(n>0)有相同的焦點(diǎn)F1 , F2 , P是它們的一個(gè)交點(diǎn),則△F1PF2的形狀是( )
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.隨m,n的變化而變化
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且cos2A+cos2B+2sinAsinB=2coc2C. (Ⅰ)求角C的值;
(Ⅱ)若△ABC為銳角三角形,且 ,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知()的最小值為.
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,內(nèi)角, , 的對邊分別為, , ,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的個(gè)數(shù)為:( )
①y= 的圖象關(guān)于(0,0)對稱;
②y=x3+x+1的圖象關(guān)于(0,1)對稱;
③y= 的圖象關(guān)于直線x=0對稱;
④y=sinx+cosx的圖象關(guān)于直線x= 對稱.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點(diǎn) ,并且經(jīng)過點(diǎn) .
(1)求橢圓的方程;
(2)若過點(diǎn)A(0,2)的直線l與橢圓交于不同的兩點(diǎn)M、N(M在A、N之間),試求△OAM與△OAN面積之比的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com