已知i是虛數(shù)單位,復(fù)數(shù)z的共軛復(fù)數(shù)是,如果|z|+=8-4i,那么z等于( )
A.-3-4i B.-3+4i
C.4+3i D.3+4i
科目:高中數(shù)學 來源:2014年陜西省咸陽市高考模擬考試(一)理科數(shù)學試卷(解析版) 題型:填空題
設(shè)命題:實數(shù)滿足,其中;命題:實數(shù)滿足且的必要不充分條件,則實數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學試卷(解析版) 題型:填空題
由空間向量,構(gòu)成的向量集合,則向量的模的最小值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
某高校組織自主招生考試,其有2 000名學生報名參加了筆試,成績均介于195分到275分之間,從中隨機抽取50名同學的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分成八組:第一組[195,205),第二組[205,215),……,第八組[265,275).如圖是按上述分組方法得到的頻率分布直方圖.
(1)從這2 000名學生中,任取1人,求這個人的分數(shù)在255~265之間的概率約是多少?
(2)求這2 000名學生的平均分數(shù);
(3)若計劃按成績?nèi)?/span>1 000名學生進入面試環(huán)節(jié),試估計應(yīng)將分數(shù)線定為多少?
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷2練習卷(解析版) 題型:選擇題
若數(shù)列{an}滿足:存在正整數(shù)T,對于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}為周期數(shù)列,周期為T.已知數(shù)列{an}滿足a1=m(m>0),an+1=則下列結(jié)論中錯誤的是( )
A.若m=,則a5=3
B.若a3=2,則m可以取3個不同的值
C.若m=,則數(shù)列{an}是周期為3的數(shù)列
D.?m∈Q且m≥2,使得數(shù)列{an}是周期數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷1練習卷(解析版) 題型:解答題
已知a,b∈R,函數(shù)f(x)=a+ln(x+1)的圖象與g(x)=x3-x2+bx的圖象在交點(0,0)處有公共切線.
(1)證明:不等式f(x)≤g(x)對一切x∈(-1,+∞)恒成立;
(2)設(shè)-1<x1<x2,當x∈(x1,x2)時,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷1練習卷(解析版) 題型:填空題
“求方程x+x=1的解”有如下解題思路:設(shè)f(x)=x+x,則f(x)在R上單調(diào)遞減,且f(2)=1,所以原方程有唯一解x=2.類比上述解題思路,不等式x6-(x+2)>(x+2)3-x2的解集是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷6練習卷(解析版) 題型:解答題
某高校組織自主招生考試,共有2 000名優(yōu)秀同學參加筆試,成績均介于195分到275分之間,從中隨機抽取50名同學的成績進行統(tǒng)計,將統(tǒng)計結(jié)果按如下方式分成8組:第1組[195,205),第2組[205,215),…,第8組[265,275].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在260分(含260分)以上的同學進入面試.
(1)估計所有參加筆試的2 000名同學中,參加面試的同學人數(shù);
(2)面試時,每位同學抽取兩個問題,若兩個問題全答錯,則不能取得該校的自主招生資格;若兩個問題均回答正確且筆試成績在270分以上,則獲A類資格;其他情況下獲B類資格.現(xiàn)已知某中學有兩人獲得面試資格,且僅有一人筆試成績?yōu)?/span>270分以上,在回答兩個面試問題時,兩人對每一個問題正確回答的概率均為,求恰有一名同學獲得該高校B類資格的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)專題階段評估模擬卷4練習卷(解析版) 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點,F是AB的中點,AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com