【題目】某網(wǎng)站登錄密碼由四位數(shù)字組成,某同學(xué)將四個數(shù)字0,325,編排了一個順序作為密碼.由于長時間未登錄該網(wǎng)站,他忘記了密碼.若登錄時隨機輸入由0,32,5組成的一個密碼,則該同學(xué)不能順利登錄的概率是多少?

【答案】

【解析】

利用間接法求概率,利用樹狀圖獲得樣本點的個數(shù),進而先求得“輸入由0,3,2,5組成的一個四位數(shù)字,恰是密碼”的概率,根據(jù)對立事件獲得所求即可

用事件A表示“輸入由0,3,2,5組成的一個四位數(shù)字,但不是密碼”,由于事件A比較復(fù)雜,可考慮它的對立事件,即“輸入由0,3,2,5組成的一個四位數(shù)字,恰是密碼”,

顯然它只有一種結(jié)果,

四個數(shù)字0,3,2,5隨機編排順序,所有可能結(jié)果可用樹狀圖表示,如圖,

從樹狀圖可以看出,將四個數(shù)字0,3,2,5隨機編排順序,共有24種可能的結(jié)果,即樣本空間共含有24個樣本點,且24個樣本點出現(xiàn)的結(jié)果是等可能的,因此可以用古典概型來解決,,得,

因此,隨機輸入由0,3,2,5組成的一個24四位數(shù)字,但不是密碼,即該同學(xué)不能順利登錄的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某育種基地對某個品種的種子進行試種觀察,經(jīng)過一個生長期培養(yǎng)后,隨機抽取株作為樣本進行研究。株高在及以下為不良,株高在之間為正常,株高在及以上為優(yōu)等。下面是這個樣本株高指標(biāo)的莖葉圖和頻率分布直方圖,但是由于數(shù)據(jù)遞送過程出現(xiàn)差錯,造成圖表損毀。請根據(jù)可見部分,解答下面的問題:

1)求的值并在答題卡的附圖中補全頻率分布直方圖;

2)通過頻率分布直方圖估計這株株高的中位數(shù)(結(jié)果保留整數(shù));

3)從育種基地內(nèi)這種品種的種株中隨機抽取2株,記表示抽到優(yōu)等的株數(shù),由樣本的頻率作為總體的概率,求隨機變量的分布列(用最簡分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于兩點,與軸、軸分別相交于點和點,且,點是點關(guān)于軸的對稱點,的延長線交橢圓于點,過點、分別做軸的垂線,垂足分別為、.

(1)求橢圓的方程;

(2)是否存在直線,使得點平分線段,?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題的真假.

1)若直線上有無數(shù)個點不在平面內(nèi),則;

2)若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;

3)若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點;

4)如果兩條平行直線中的一條與一個平面平行,則另一條直線也與這個平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知線C的極坐標(biāo)方程為:ρ=2sin(θ+),過P(0,1)的直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C交于M,N兩點.

(1)求出直線l與曲線C的直角坐標(biāo)方程.

(2)求|PM|2+|PN|2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調(diào)增函數(shù)。

①求的最大整數(shù)值;

②證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)圖象上所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,再向右平移個單位長度,得到函數(shù)的圖象,則下列說法正確的是( )

A. 函數(shù)的一條對稱軸是

B. 函數(shù)的一個對稱中心是

C. 函數(shù)的一條對稱軸是

D. 函數(shù)的一個對稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個極值點,且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠推出品牌為玉兔的新產(chǎn)品,生產(chǎn)玉兔的固定成本為20000元,每生產(chǎn)一件玉兔需要增加投入100元,根據(jù)統(tǒng)計數(shù)據(jù),總收益P(單位:元)與月產(chǎn)量x(單位:件)滿足(注:總收益=總成本+利潤)

1)請將利潤y(單位:元)表示成關(guān)于月產(chǎn)量x(單位:件)的函數(shù);

2)當(dāng)月產(chǎn)量為多少時,利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案