9.設(shè)集合A={y|y=log2x,x>1},B={y|y=($\frac{1}{2}$)x,0<x<1},則A∩B等于(  )
A.{y|$\frac{1}{2}$<y<1}B.{y|0<y$<\frac{1}{2}$}C.D.{y|0<y<1}

分析 由已知分別求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={y|y=log2x,x>1}={y|y>0},
B={y|y=($\frac{1}{2}$)x,0<x<1}={y|$\frac{1}{2}<x<1$},
∴A∩B={y|$\frac{1}{2}<y<1$}.
故選:A.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)為R上的單調(diào)函數(shù),f-1(x)是它的反函數(shù),點A(-1,3)和點B(1,1)均在函數(shù)f(x)的圖象上,則不等式|f-1(2x)|<1的解集為( 。
A.(-1,1)B.(1,3)C.(0,log23)D.(1,log23)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在上海世界博覽會開展期間,計劃選派部分高二學(xué)生參加宣傳活動,報名參加的學(xué)生需進(jìn)行測試,共設(shè)4道選擇題,規(guī)定必須答完所有題,且答對一題得1分,答錯一題扣1分,至少得2分才能入選成為宣傳員;甲乙丙三名同學(xué)報名參加測試,他們答對每個題的概率都為$\frac{1}{3}$,且每個人答題相互不受影響.
(1)用隨機(jī)變量ξ表示能夠成為宣傳員的人數(shù),求ξ的數(shù)學(xué)期望與方差;
(2)若學(xué)生甲得分的數(shù)值為隨機(jī)變量η,求所得分?jǐn)?shù)η的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.
廣告費用X (萬元)1234567
銷售額y (百萬元)2.93.33.64.44.85.25.9
根據(jù)表可得回歸方程y=bx+a中的a為2.3,根據(jù)此模型預(yù)報廣告費用為12萬元時銷售額為8.3萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,點A是BCD所在平面外一點,AD=BC,E、F分別是 AB、CD的中點,且EF=$\frac{{\sqrt{2}}}{2}$AD,求異面直線AD和BC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,在正三棱錐P-ABC中,D,E分別是AB,AC的中點,O為頂點P在底面ABC內(nèi)的投影,有下列三個論斷:①AC⊥PB;②AC∥平面POD;③AB⊥平面POD,其中正確論斷的個數(shù)為(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知點A(-1,0),B(1,0),直線AM與直線BM相交于點M,直線AM與直線BM的斜率分別記為kAM與kBM,且kAM•kBM=-2
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過定點F(0,1)作直線PQ與曲線C交于P,Q兩點,△OPQ的面積是否存在最大值?若存在,求出△OPQ面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.關(guān)于下列命題:
①若函數(shù)y=2x+1的定義域是{x|x≤0},則它的值域是{y|y≤1};
②若函數(shù)y=$\frac{1}{x}$的定義域是{x|x>2},則它的值域是{y|y≤$\frac{1}{2}$};
③若函數(shù)y=x2的值域是{y|0≤y≤4},則它的定義域一定是{x|-2≤x≤2};
④若函數(shù)y=x+$\frac{1}{x}$的定義域是{x|x<0},則它的值域是{y|y≤-2}.
其中不正確的命題的序號是②③.(注:把你認(rèn)為不正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=$\left\{\begin{array}{l}{2x+3,x<0}\\{2{x}^{2}+1,x≥0}\end{array}\right.$,則f[f(-1)]的值是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案